Identification of PINCH in Schwann cells and DRG neurons: shuttling and signaling after nerve injury.

Glia

Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0629, USA.

Published: February 2003

Particularly interesting new cysteine-histidine rich protein (PINCH) is a double zinc finger domain (LIM)-only adapter protein that functions to recruit the integrin-linked kinase (ILK) to sites of integrin activation. Genetic studies have shown that PINCH and ILK are required for integrin signaling. Since integrin activation is associated with Schwann cell migration, neurite outgrowth and regeneration, this study examined PINCH in the normal peripheral nervous system and after chronic constriction injury (CCI) in adult Sprague-Dawley rats. Immunohistochemistry identified PINCH immunoreactivity in cell bodies of dorsal root ganglia (DRG) neurons, axons, satellite cells, and Schwann cells. PINCH immunostaining was localized to the membrane of uninjured DRG cell bodies consistent with its localization at a site of integrin activation. In contrast, 5 days following CCI, PINCH immunostaining was diffuse throughout the DRG cell cytoplasm. Confocal microscopy of primary and transformed Schwann cells localized PINCH in cytoplasmic, perinuclear and nuclear areas. Examination of the PINCH sequence revealed a putative leucine-rich nuclear export signal (NES) and an overlapping basic nuclear localization signal (NLS). To demonstrate nuclear export of PINCH, rabbit anti-PINCH IgG was microinjected into Schwann cell nuclei and allowed to combine with PINCH contained within the nucleus. Immunofluorescence showed that the PINCH and anti-PINCH IgG complex rapidly translocated to the cytoplasm. Treatment with leptomycin B caused nuclear accumulation of PINCH, indicating that the CRM1 pathway mediates nuclear export of PINCH. ILK activity in Schwann cells was enhanced by platelet-derived growth factor (PDGF) and tumor necrosis factor alpha. PINCH immunoprecipitates from PDGF- and TNFalpha-stimulated Schwann cells contained several high-molecular-weight threonine-phosphorylated proteins. Taken together, these results indicate that PINCH is an abundant shuttling/signaling protein in Schwann cells and DRG neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.10138DOI Listing

Publication Analysis

Top Keywords

schwann cells
24
pinch
15
drg neurons
12
integrin activation
12
nuclear export
12
schwann
8
cells drg
8
pinch ilk
8
schwann cell
8
cell bodies
8

Similar Publications

In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.

View Article and Find Full Text PDF

Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.

View Article and Find Full Text PDF

Comparative Sensitivity of MRI Indices for Myelin Assessment in Spinal Cord Regions.

Tomography

January 2025

Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan.

Although multiple magnetic resonance imaging (MRI) indices are known to be sensitive to the noninvasive assessment of myelin integrity, their relative sensitivities have not been directly compared. This study aimed to identify the most sensitive MRI index for characterizing myelin composition in the spinal cord's gray matter (GM) and white matter (WM). MRI was performed on a deer's ex vivo cervical spinal cord.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) and mesenchymal stem cells (MSCs) differentiated towards Schwann-like have plasticity properties. These cells express the Glial fibrillary acidic protein (GFAP), a type of cytoskeletal protein that significantly regulates many cellular functions, including those that promote cellular plasticity needed for regeneration. However, the expression of GFAP isoforms (α, β, and δ) in these cells has not been characterized.

View Article and Find Full Text PDF

Isolation, culture, and characterization of primary endothelial cells and pericytes from mouse sciatic nerve.

J Neurosci Methods

January 2025

National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, 22332, Republic of Korea. Electronic address:

Background: The recovery of injured peripheral nerves relies on angiogenesis, where newly formed blood vessels act as pathways guiding Schwann cells across the wound to support axon regeneration. While some research has examined this process, the specific mechanisms of angiogenesis in peripheral nerve healing remain unclear. In vitro models are vital tools to investigate these mechanisms; however, no current in vitro culture methods exist for isolating vascular cells, such as endothelial cells (ECs) and pericytes, specifically from sciatic nerves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!