A mathematical description of the regulation of ATP production in muscle cells is presented whereby the activity of OxP can be calculated as a function of (1) free [ADP] as the substrate and (2) a second driving force PhiDelta G (kilojoules per mole) resulting from the difference of free energy Delta G(ox,ap) (kilojoules per mole)-Delta G(ATP,cyt) (kilojoules per mole). In turn, the term Delta G(ox,ap) results from the proton motive force and the generation of ATP in the matrix space including the ATP-ADP exchange, whereas the phosphorylation state of the CHEP-sytem is described by Delta G(ATP,cyt). Regulation of glycolysis is calculated as a function of free [ADP] and [AMP] at the level of PFK. The PFK is inhibited by a decreasing pH resulting from lactate accumulation. The ATP/PCr equilibrium of the CHEP-system is calculated by algebraic equations. The dynamic behaviour of the metabolic control of ATP production as a function of ATP consumption is calculated by a system of two 1st-order non-linear differential equations, including a time delay considering oxygen transport. Lactate distribution and elimination is calculated using a two-compartment model with an active lactate producing, and a passive, space including lactate elimination by combustion. The simulation of the dynamics of energy metabolism of muscle cells is performed by the stepwise solution of the differential equations with a 5th-order Runge-Kutta-Fehlberg-routine. Examples of various applications of the simulation of the dynamics of energy supply demonstrate the qualitative and quantitative congruence to the behaviour of metabolic processes in experiments during rest, exercise and recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-002-0676-3 | DOI Listing |
Anal Chem
January 2025
Research Unit of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
Although cathepsin S is transported from the spleen to the liver, where it cleaves collagen XVIII to produce endostatin and plays a critical role in the onset of early liver fibrosis, the relationship between liver fibrosis and spleen function remains underexplored. Given the roles of phosphorylation in disease, understanding its regulatory mechanism in early liver fibrosis is crucial. Despite advances in mass spectrometry enhancing phosphoproteomics, its application is limited by small clinical samples and subtle protein changes.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Laboratory of Plant Physiology, Universidad de Extremadura, Badajoz, Spain.
Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11651, Cairo, Egypt.
The clinical use of dexamethasone (DXM) is associated with the development of non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which DXM-induced NAFLD is still incompletely known. Therefore, the current study aims to test the hypothesis that DXM-induced NAFLD is mediated by dysregulation of key genes involved in lipid metabolism and liraglutide (LG) can ameliorate these effects.
View Article and Find Full Text PDFJ Gerontol B Psychol Sci Soc Sci
January 2025
Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.
Objectives: Loneliness is associated with an elevated risk of dementia. There is mixed evidence from imaging studies on whether loneliness is associated with neuropathology in dementia-free adults. This study tests whether loneliness is associated with plasma neurobiomarkers of amyloid (Aβ42/Aβ40), phosphorylated tau 181 (pTau181), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) and imaging measures of amyloid and tau.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!