Maurotoxin, a 34-amino acid toxin from Scorpio maurus scorpion venom, was examined for its ability to inhibit cloned human SK (SK1, SK2, and SK3), IK1, and Slo1 calcium-activated potassium (K(Ca)) channels. Maurotoxin was found to produce a potent inhibition of Ca(2+)-activated (86)Rb efflux (IC(50), 1.4 nM) and inwardly rectifying potassium currents (IC(50), 1 nM) in CHO cells stably expressing IK1. In contrast, maurotoxin produced no inhibition of SK1, SK2, and SK3 small-conductance or Slo1 large-conductance K(Ca) channels at up to 1 microM in physiologically relevant ionic strength buffers. Maurotoxin did inhibit (86)Rb efflux (IC(50), 45 nM) through, and (125)I-apamin binding (K(i), 10 nM) to SK channels in low ionic strength buffers (i.e., 18 mM sodium, 250 mM sucrose), which is consistent with previous reports of inhibition of apamin binding to brain synaptosomes. Under similar low ionic strength conditions, the potency for maurotoxin inhibition of IK1 increased by approximately 100-fold (IC(50), 14 pM). In agreement with its ability to inhibit recombinant IK1 potassium channels, maurotoxin was found to potently inhibit the Gardos channel in human red blood cells and to inhibit the K(Ca) in activated human T lymphocytes without affecting the voltage-gated potassium current encoded by Kv1.3. Maurotoxin also did not inhibit Kv1.1 potassium channels but potently blocked Kv1.2 (IC(50), 0.1 nM). Mutation analysis indicates that similar amino acid residues contribute to the blocking activity of both IK1 and Kv1.2. The results from this study show that maurotoxin is a potent inhibitor of the IK1 subclass of K(Ca) potassium channels and may serve as a useful tool for further defining the physiological role of this channel subtype.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.63.2.409DOI Listing

Publication Analysis

Top Keywords

potassium channels
16
channels maurotoxin
12
ionic strength
12
maurotoxin
9
maurotoxin potent
8
potent inhibitor
8
ability inhibit
8
sk1 sk2
8
sk2 sk3
8
kca channels
8

Similar Publications

Potential of emodepside for vector-borne disease control.

Malar J

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.

View Article and Find Full Text PDF

Small molecule inhibits KCNQ channels with a non-blocking mechanism.

Nat Chem Biol

January 2025

Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.

Voltage-gated ion channels (VGICs) are crucial targets for neuropsychiatric therapeutics owing to their role in controlling neuronal excitability and the established link between their dysfunction and neurological diseases, highlighting the importance of identifying modulators with distinct mechanisms. Here we report two small-molecule modulators with the same chemical scaffold, Ebio2 and Ebio3, targeting a potassium channel KCNQ2, with opposite effects: Ebio2 acts as a potent activator, whereas Ebio3 serves as a potent and selective inhibitor. Guided by cryogenic electron microscopy, patch-clamp recordings and molecular dynamics simulations, we reveal that Ebio3 attaches to the outside of the inner gate, employing a unique non-blocking inhibitory mechanism that directly squeezes the S6 pore helix to inactivate the KCNQ2 channel.

View Article and Find Full Text PDF

Background And Purpose: The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ protein, likely through the inhibition of G-protein gated K (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs.

Experimental Approach: We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ.

View Article and Find Full Text PDF

Inhibition of Kv1.1 channels ameliorates Cu(II)-induced microglial activation and cognitive impairment in mice.

Neurochem Int

January 2025

Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China. Electronic address:

Microglia-mediated neuroinflammation plays a critical role in neuronal damage in neurodegenerative disorders such as Alzheimer's disease. Evidence shows that voltage-gated potassium (Kv) channels regulate microglial activation. We previously reported that copper dyshomeostasis causes neuronal injury via activating microglia.

View Article and Find Full Text PDF

The ATP-sensitive potassium (KATP) channels, composed of Kir6.2 and SUR1 subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!