The expression of RNA polymerase (RNAP) sigma factor genes and proteins was characterized as a first step toward understanding their functions in a unicellular cyanobacterium Synechocystis sp. PCC 6803, which can perform photosynthesis. All nine sigma factors (group 1, SigA; group 2, SigB to SigE; and group 3, SigF to SigI) and each RNAP core subunit (RpoA, RpoB, RpoC1 and RpoC2) were overproduced and purified from Escherichia coli cells, then polyclonal antibodies were prepared. Western blot and primer extension analyses revealed that the intracellular levels of group 1 and 2 sigma factors ranged from 0.9 fmol to 9.3 fmol per microgram of the total protein under conditions of steady-state growth, and that growth phase-dependent or constitutive transcripts were observed. Interestingly, no group 3 sigma factor proteins were detected under normal physiological conditions whereas their transcripts were robust, implying a possible regulation of translational attenuation and/or protein instability. Phylogenetic analysis also revealed that group 3 sigma factor homologues of cyanobacteria are conserved with evolutionary or functionary divergence among them. In vitro and in vivo results indicated significant evidence of high-light responsive SigD expression and its promoter recognition of the photosynthesis gene, psbA. On the other hand, autoregulated sigB transcription, a dramatically increased SigB expression upon the exposure of cells to heat-shock, and specific promoter recognition by SigB with redundancy of other sigma factors on the heat-shock hspA promoter were observed. These findings clearly indicated that SigB is a heat-shock responsive sigma factor. The unique promoter architecture and expression of the relevant sigma factor gene are also discussed herein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-2836(02)01242-1DOI Listing

Publication Analysis

Top Keywords

sigma factor
20
sigma factors
16
group sigma
12
sigma
9
rna polymerase
8
promoter recognition
8
group
6
expression
5
factor
5
sigb
5

Similar Publications

Engineered Phage Enables Efficient Control of Gene Expression upon Infection of the Host Cell.

Int J Mol Sci

December 2024

CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Recently, we developed a spatial phage-assisted continuous evolution (SPACE) system. This system utilizes chemotaxis coupled with the growth of motile bacteria during their spatial range expansion in soft agar to provide fresh host cells for iterative phage infection and selection pressure for preserving evolved genes of interest carried by phage mutants. Controllable mutagenesis activated only in a subpopulation of the migrating cells is essential in this system to efficiently generate mutated progeny phages from which desired individuals are selected during the directed evolution process.

View Article and Find Full Text PDF

Determination of Westcott g-factors for the assay of non-1/v nuclides using k-NAA.

Appl Radiat Isot

January 2025

Reactor Design Group, IGCAR, Kalpakkam, 603102, India.

This study examines the impact of the Westcott g-factor on the concentration of elements like In, Ir, Re, Yb, Eu and Lu, measured using neutron capture reactions (n,γ), specifically focusing on those reactions, whose thermal neutron capture cross-sections (σ ) deviate from the conventional '1/v' behaviour. These measurements are quantified using k₀-based neutron activation analysis. The Westcott g-factor for the non-1/v nuclides was calculated using the characterized neutron temperature (T) at PFTS irradiation channel of KAMINI reactor.

View Article and Find Full Text PDF

Weak non-linearities of amorphous polymer under creep in the vicinity of the glass transition.

Eur Phys J E Soft Matter

January 2025

Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, Rue Vauquelin, 75005, Paris, France.

The creep behavior of an amorphous poly(etherimide) polymer is investigated in the vicinity of its glass transition in a weakly non linear regime where the acceleration of the creep response is driven by local configurational rearrangements. From the time shifts of the creep compliance curves under stresses from 1 to 15 MPa and in the temperature range between and , where is the glass transition temperature, we determine a macroscopic acceleration factor. The macroscopic acceleration is shown to vary as temperature with , where is the macroscopic stress and Y is a decreasing function of compliance.

View Article and Find Full Text PDF

ProPr54 web server: predicting σ promoters and regulon with a hybrid convolutional and recurrent deep neural network.

NAR Genom Bioinform

March 2025

Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.

σ serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ promoters and regulon in bacterial genomes.

View Article and Find Full Text PDF

Selpercatinib mitigates cancer cachexia independent of anti-tumor activity in the HT1080 tumor model.

Cancer Lett

January 2025

Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. Electronic address:

Anorexia is a major cause of cancer cachexia and is induced by growth differentiation factor-15 (GDF15), which activates the rearranged during transfection (RET) protein tyrosine kinase in the hindbrain through GDF family receptor α-like (GFRAL), raising the possibility of targeting RET for cancer cachexia treatment. RET-altered cancer patients treated with RET-selective kinase inhibitors gain weight, however, it is unclear whether this results from tumor regression that improves the overall health of patients. Thus, the potential of using a RET inhibitor to address cancer cachexia remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!