Textbooks lump the middle ears of 'submammalian Tetrapoda' as being 'one-ossicle ears'. Conventionally the anuran middle ear is depicted with a shaft-like skeletal unit connecting the tympanic membrane to the inner ear. This shaft comprises mediad a long bony columella and laterad a short cartilaginous extracolumella. But dissection of Rana catesbeiana ears showed: the extracolumella, as long as the columella, is proximally expanded in the vertical plane, forming dorsal and ventral heads. The medio-dorsal head is movably jointed to the columella, between these two there is an obtuse angle ventrad; the extracolumellar medio-ventral head is anchored by a ligament to the middle-ear cavity ceiling. When the tympanic membrane moves outwards, pulling the extracolumella, the medio-dorsal head of the extracolumella must be forced inwards, rotating on the ventral anchorage, pushing the columella towards the inner ear. The ossicular chain thus includes a mechanical lever, possessing the magnitude of the ratio length:width of the extracolumella; this is additional to the lever known from the columellar footplate, which rotates on its firm ventral attachment. These levers are confirmed physiologically, by the difference between the inner-ear sensitivity (shown by isopotential audiograms of microphonic potentials) when stimulated by a vibrator first at the tympanic membrane, then at the proximal stump of the amputated columella. Perusal of the primary literature showed that this morphology is widespread among anuran ears.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5955(02)00709-8 | DOI Listing |
Acta Otolaryngol
January 2025
Department of Otomicrosurgery, Sixth Medical Center of The PLA General Hospital, Beijing, China.
Background: In some rare cases of congenital aplasia of the oval window (OW), malformed facial nerve (FN) locations covering the most or entire OW present a challenge to hearing reconstruction, there is no a highly effective surgical hearing reconstruction methods.
Aims/objectives: To update a Scala tympani drill-out technique (SDT) for abnormal FN course covering the OW.
Material And Methods: All patients of congenital atresia of the OW was recruited between August 2014 and July 2023 in a tertiary-care center.
Acute necrotizing otitis media is a severe middle ear infection which causes necrosis of the tympanic cavity. A 54-year-old female was presented who suffered from diabetes mellitus and end-stage renal disease presenting with severe otalgia, initially thought to be necrotizing otitis externa. She rapidly progressed to total necrosis of the tympanic membrane.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
January 2025
Department of Biology, Colgate University, Hamilton, New York, USA.
An animal's body mass is said to be indirectly related to its rate of heat loss; that is, smaller animals with higher surface area to volume tend to lose heat faster than larger animals. Thus, thermoregulation should be related to body size, however, generalizable patterns are still unclear. Domestic dogs are a diverse species of endothermic mammals, including a 44-fold difference in body size.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Medical Faculty, Department of Otorhinolaryngology, Recep Tayyip Erdogan University, Rize, Turkey.
Background: Myringoplasty is one of the treatments used for perforated tympanic membrane.
Aim/objective: We aimed to evaluate the long-term anatomical and functional outcomes of patients who underwent endoscopic inlay butterfly cartilage myringoplasty.
Material And Methods: We retrospectively analyzed 74 patients who had undergone endoscopic butterfly cartilage myringoplasty were followed for at least five years.
Acta Otolaryngol
January 2025
Department of Otorhinolaryngology, Institute of Science Tokyo, Tokyo, Japan.
Background: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.
Aim: We aimed to develop an automated diagnostic system for middle ear diseases by applying deep learning techniques to tympanic membrane images obtained during routine clinical practice.
Material And Methods: To augment the training dataset, we explored the use of generative adversarial networks (GANs) to produce high-quality synthetic tympanic images that were subsequently added to the training data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!