The megakaryoblastic leukemia cell line MOLM-16 was established at relapse from the peripheral blood of a 77-year-old Japanese woman with minimally differentiated acute myeloid leukemia (AML-M0). Immunophenotyping of the fresh leukemic cells revealed a myeloid/NK precursor phenotype being positive for CD7, CD13, CD33, CD34, and CD56. In addition, megakaryocyte-associated antigens CD41 and CD61 were found to be positive. The established cell line designated MOLM-16 was proliferatively responsive to the treatment with various cytokines including EPO, GM-CSF, IL-3, PIXY-321, and TPO. MOLM-16 revealed characteristics of the megakaryocytic lineage in terms of immunophenotyping being positive for CD9, CD31, CD36, CD41, CD61, CD62P, CD63, CD110, CD151, thrombospondin, von Willebrand factor (vWf), and fibrinogen. Electron microscopic analysis showed positivity for ultrastructural platelet peroxidase in the nuclear envelope. The karyotype analysis of MOLM-16 revealed various numerical and structural abnormalities including t(6;8)(q21;q24.3), t(9;18)(q13;q21) and marker chromosomes. The extensive immunological, cytogenetic and functional characterization of MOLM-16 suggests that this cell line may represent a scientifically significant in vitro model which could facilitate the evaluation of megakaryocytic differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0145-2126(02)00081-4 | DOI Listing |
Blood
December 2024
Institut Gustave Roussy, Villejuif, France.
Pediatric acute myeloid leukemia frequently harbor fusion oncogenes associated with poor prognosis, including KMT2A, NUP98 and GLIS2 rearrangements. While murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSC).
View Article and Find Full Text PDFGenes Dis
March 2025
Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
Pathol Int
December 2024
Department of Obstetrics and Gynecology, Saiseikai Kawaguchi General Hospital, Kawaguchi, Japan.
Cytometry B Clin Cytom
November 2024
Division of Hematology, Oncology and Transplantation, Department of Medicine, Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada.
Rare acute leukemia (AL) components or subtypes such as blastic plasmacytoid dendritic cell neoplasm (BPDCN) or early T-cell precursor acute Lymphoblastic Leukemia (ETP-ALL) can be difficult to detect by routine flow cytometry due to their immunophenotypes overlapping with other poorly differentiated AL. We hypothesized that using standardized EuroFlow™ Consortium approach could better diagnose such entities among cases that previously classified as acute myeloid leukemia (AML)-M0, AML with minimal differentiation, AML with myelodysplasia-related changes without further lineage differentiation, and AL of ambiguous lineage. In order to confirm this hypothesis and assess whether these AL subtypes such as BPDCN and ETP-ALL had previously gone undetected, we reanalyzed 49 banked cryopreserved sample cases using standardized EuroFlow™ Consortium panels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!