Here we describe a novel mechanism for plasma membrane insertion of the delta opioid receptor (DOR). In small dorsal root ganglion neurons, only low levels of DORs are present on the cell surface, in contrast to high levels of intracellular DORs mainly associated with vesicles containing calcitonin gene-related peptide (CGRP). Activation of surface DORs caused Ca(2+) release from IP(3)-sensitive stores and Ca(2+) entry, resulting in a slow and long-lasting exocytosis, DOR insertion, and CGRP release. In contrast, membrane depolarization or activation of vanilloid and P2Y(1) receptors induced a rapid DOR insertion. Thus, DOR activation induces a Ca(2+)-dependent insertion of DORs that is coupled to a release of excitatory neuropeptides, suggesting that treatment of inflammatory pain should include blockade of DORs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-6273(02)01103-0DOI Listing

Publication Analysis

Top Keywords

delta opioid
8
dor insertion
8
insertion
5
dors
5
activation
4
activation delta
4
opioid receptors
4
receptors induces
4
induces receptor
4
receptor insertion
4

Similar Publications

Scaled and Weighted Laplacian Matrices as Functional Descriptors for GPCR Ligands.

J Comput Chem

January 2025

Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.

The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.

View Article and Find Full Text PDF

Substance use disorders (SUDs) are a significant public health concern, with over 30% failing available treatment. Severe SUD is characterized by drug-cue reactivity that predicts treatment-failure. We leveraged this pathophysiological feature to personalize deep brain stimulation (DBS) of the nucleus accumbens region (NAc) in an SUD patient.

View Article and Find Full Text PDF

Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.

View Article and Find Full Text PDF

Background: Studies examining racial and ethnic disparities in-hospital mortality for patients hospitalized with COVID-19 had mixed results. Findings from patients within academic medical centers (AMCs) are lacking, but important given the role of AMCs in improving health equity.

Objective: The purpose of this study is to assess whether minority patients hospitalized with COVID-19 in National COVID Cohort Collaborative (N3C) institutions, which consist predominantly of AMCs, have higher mortality rates relative to White patients.

View Article and Find Full Text PDF

Peripheral inflammation enhances opioid-induced gastrointestinal motility inhibition via up-regulating spinal mu opioid receptor.

Toxicol Appl Pharmacol

January 2025

Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China. Electronic address:

Opioids are potent analgesics in clinical pain management but exert variable analgesia in different pain types. Opioid-induced constipation is a common side effect of opioid therapy, and whether opioids induce different gastrointestinal motility inhibitions in different pain types is unknown. In this study, we evaluated the antinociceptive effects and inhibition of upper gastrointestinal transit and colonic bead expulsion of morphine, DAMGO, and Deltorphin in mouse CFA chronic inflammatory pain, SNI chronic neuropathic pain, and carrageenan chronic inflammatory pain models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!