Aggregates of the diacid form of tetra(p-carboxyphenyl)porphyrin (TCPP) are found to be stabilized in aqueous solution at low pH in the presence of poly(vinyl alcohol). At pH values in the range from about 1 to 4, a split Soret band is observed which is independent of counterion and tentatively assigned to a dimer species. As the pH is made lower than 1, the spectra evolve to reveal the presence of porphyrin aggregates. As in the case of the well-known aggregates of the related tetra(p-sulfonatophenyl)porphyrin (TSPP) diacid, the concentration of spectroscopically distinguishable aggregates increases with increasing ionic strength or decreasing pH. Unlike aggregates of TSPP, however, TCPP aggregates below pH 1 have visible absorption spectra which depend on the counterion, which is Cl(-) or NO(3)(-) in this study. In this work, we present visible absorption, light-scattering, and resonance Raman spectra of TCPP diacid in its monomer, dimer, and aggregated forms and attempt to understand the structural basis for counterion-dependent structure and excitonic coupling in the aggregates. Evidence is presented for intercalation of inorganic counterions between porphyrin molecules in the aggregate, an effect which to our knowledge has not been previously reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0274397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!