According to DNA hybridization data, thermophilic streptococci used in Russia as starters in the dairy industry are divided into 6 different genomovars, with a degree of DNA homology not exceeding 20-50%. The analysis of genomes from these genomovars using SmaI restriction endonuclease and pulsed-field gel electrophoresis revealed a wide variability of the genome size. In some strains, the genome size considerably exceeded 2000 kbp. Most of the strains studied contained plasmids about 120 kbp in size.

Download full-text PDF

Source

Publication Analysis

Top Keywords

genome size
8
[comparison genomes
4
genomes streptococcus
4
streptococcus thermophilus
4
thermophilus strains
4
strains origins]
4
origins] dna
4
dna hybridization
4
hybridization data
4
data thermophilic
4

Similar Publications

The cabbage aphid, Brevicoryne brassicae, is a major pest on Brassicaceae plants, causing significant yield losses annually. However, the lack of genomic resources has hindered progress in understanding this pest at the molecular level. Here, we present a high-quality, chromosomal-level genome assembly for B.

View Article and Find Full Text PDF

Organismal complexity strongly correlates with the number of protein families and domains.

Proc Natl Acad Sci U S A

February 2025

Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901.

In the pregenomic era, scientists were puzzled by the observation that haploid genome size (the C-value) did not correlate well with organismal complexity. This phenomenon, called the "C-value paradox," is mostly explained by the fact that protein-coding genes occupy only a small fraction of eukaryotic genomes. When the first genome sequences became available, scientists were even more surprised by the fact that the number of genes (G-value) was also a poor predictor of complexity, which gave rise to the "G-value paradox.

View Article and Find Full Text PDF

First report of privet leaf blotch-associated virus (PLBaV) infecting lilac ( L.) in France.

Plant Dis

January 2025

INRA Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, CS20032, Villenave d'Ornon , France, 33882 cedex;

Privet leaf blotch-associated virus (PLBaV) is an Idaeovirus discovered by high-throughput sequencing (HTS) in privet (Ligustrum japonicum L) in southern Italy in 2017 (Navarro et al., 2017). In privet, it causes a leaf blotch disease with yellowish or whitish chlorotic blotches or ringspots.

View Article and Find Full Text PDF

A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.

View Article and Find Full Text PDF

Exploiting the efficient Exo:Cas12i3-5M fusions for robust single and multiplex gene editing in rice.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

The development of a single and multiplex gene editing system is highly desirable for either functional genomics or pyramiding beneficial alleles in crop improvement. CRISPR/Cas12i3, which belongs to the Class II Type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and less restricted canonical "TTN" protospacer adjacent motif (PAM). However, due to its relatively lower editing efficiency, Cas12i3-mediated multiplex gene editing has not yet been documented in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!