A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anatomy and the access grid: exploiting plastinated brain sections for use in distributed medical education. | LitMetric

Computerized animation is becoming an increasingly popular method to provide dynamic presentation of anatomical concepts. However, most animations use artistic renderings as the base illustrations that are subsequently altered to depict movement. In most cases, the artistic rendering is a schematic that lacks realism. Plastinated sections provide a useful alternative to artistic renderings to serve as a base image for animation. The purpose of this study is to describe a method for developing animations by using plastinated sections. This application is used in Project TOUCH as a supplemental learning tool for a problem-based learning case distributed over the National Computational Science Alliance's Access Grid. The case involves traumatic head injury that results in an epidural hematoma with transtentorial uncal herniation. In addition, a subdural hematoma is animated permitting the student to contrast the two processes for a better understanding of dural hematomas, in general. The method outlined uses P40 plastinated coronal brain sections that are digitized and to which contiguous anatomical structures are rendered. The base illustration is rendered, interpolated, and viewed while audio narration describes the event. This method demonstrates how realistic anatomical animations can be generated quickly and inexpensively for medical education purposes by using plastinated brain sections.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.b.10006DOI Listing

Publication Analysis

Top Keywords

brain sections
12
access grid
8
plastinated brain
8
medical education
8
artistic renderings
8
plastinated sections
8
plastinated
5
sections
5
anatomy access
4
grid exploiting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!