Autonomous activity in the isolated guinea pig bladder.

Exp Physiol

School of Surgical and Reproductive Sciences, 3rd floor Leech building, The Medical School, University of Newcastle, NE2 4HH, UK.

Published: January 2003

Phasic changes in pressure have been reported to occur in the bladder which are not associated with micturition. Spontaneous intravesical pressure changes can be recorded from bladders in vitro or bladders in vivo isolated from the central nervous system suggesting that the bladder itself is capable of autonomous activity. Experiments using isolated cells and muscle strips indicate that the smooth muscle can generate spontaneous activity. Whether this is the origin of phasic changes in the intact organ remains unknown. The present study set out to establish the presence and characteristics of autonomous activity in the isolated guinea pig bladder. Multiple-point motion analysis and concurrent intravesical pressure recording were used to identify and quantify spontaneous and evoked activity. Highly complex autonomous activity was observed in unstimulated bladders. This activity comprised localised micro-contractions in single or multiple discrete regions, waves of activity and micro-stretches. Low-amplitude phasic 'micro-transients' were seen in the intravesical pressure trace in association with micro-contractions. Incremental increases in the intravesical volume recruited additional areas of activity. Atropine and tetrodotoxin had no effect on the micro-transients or micro-contractions. Exposure to the muscarinic agonist arecaidine (10-300 nM) initially increased the incidence of micro-contractions which subsequently became co-ordinated into phasic pressure rises and contraction waves, interspersed with periods of total quiescence. The findings describe the generation and co-ordination of autonomous activity in the bladder wall and also demonstrate complex phasic activity. This approach has shown the importance of assessing the integrative properties of the entire organ in studies of the physiology and patho-physiology of the bladder.

Download full-text PDF

Source
http://dx.doi.org/10.1113/eph8802473DOI Listing

Publication Analysis

Top Keywords

autonomous activity
20
intravesical pressure
12
activity
10
activity isolated
8
isolated guinea
8
guinea pig
8
pig bladder
8
phasic changes
8
bladder
6
autonomous
5

Similar Publications

The tedious synthesis and limited throughput biological evaluation remain a great challenge for discovering new proteolysis targeting chimera (PROTAC). To rapidly identify potential PROTAC lead compounds, we report a platform named Auto-RapTAC. Based on the modular characteristic of the PROTAC molecule, a streamlined workflow that integrates lab automation with "click chemistry" joint building-block libraries was constructed.

View Article and Find Full Text PDF

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Academic stress is associated with lower engagement in healthy behaviors, including physical exercise, among middle school students. Based on Self-Determination Theory, this study examines the association between academic stress and physical exercise behavior among middle school students, exploring the mechanisms through the chained mediation of motivation and intention. Scales used in this study include the Academic Stress Scale, Autonomous and Controlled Motivation Scales, and Physical Exercise Intention and Behavior Scales to measure relevant variables.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Weill Cornell Medicine, New York, NY, USA.

Background: The strongest genetic risk factors for AD include the e4 allele of APOE and the R47H point mutation in the TREM2 receptor. TREM2 is required for the induction of a disease-associated microglia (DAM) signature and microglial neurodegenerative phenotype (MGnD) in response to disease pathology, signatures which both include APOE upregulation. There is currently limited information regarding how the TREM2-APOE pathway ultimately contributes to AD risk, and downstream mechanisms of this pathway are unknown.

View Article and Find Full Text PDF

Progranulin is a secreted pro-protein that is necessary for maintaining lysosomal function and exerts anti-inflammatory and neurotrophic effects in the brain. Loss-of-function GRN mutations, most of which cause progranulin haploinsufficiency, are a major autosomal dominant cause of frontotemporal dementia (FTD). Other GRN variants are associated with risk for FTD, Alzheimer's disease (AD) and Parkinson's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!