Cholinergic neurons in the nucleus ambiguus (NA) were counted in autopsy tissue obtained from five patients with multiple system atrophy (MSA), four patients with PD, and five controls. The number of neurons in the dorsal NA was not significantly different among the three groups. Neurons in the ventrolateral portion of the NA were depleted in MSA. Laryngeal stridor cannot be explained solely by neuronal loss in the NA.

Download full-text PDF

Source
http://dx.doi.org/10.1212/01.wnl.0000042087.07133.87DOI Listing

Publication Analysis

Top Keywords

neurons nucleus
8
nucleus ambiguus
8
multiple system
8
system atrophy
8
preservation branchimotor
4
neurons
4
branchimotor neurons
4
ambiguus multiple
4
atrophy cholinergic
4
cholinergic neurons
4

Similar Publications

Stress plays a significant role in the onset of numerous psychiatric disorders. Depending on individual resilience or stressor's nature, long-term changes to stress in the brain can lead to a wide range of behavioral symptoms, including social withdrawal, feelings of helplessness, and emotional overeating. The brain receptor molecules are key mediators of these processes, translating neuromodulatory signals into neuronal responses or circuit activity changes that ultimately shape behavioral outcomes.

View Article and Find Full Text PDF

Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats.

Bioact Mater

May 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.

View Article and Find Full Text PDF

Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.

View Article and Find Full Text PDF

The hypothalamus as the central regulator of energy balance and its impact on current and future obesity treatments.

Arch Endocrinol Metab

January 2025

Universidade de Campinas Centro de Pesquisa em Obesidade e Comorbidades CampinasSP Brasil Centro de Pesquisa em Obesidade e Comorbidades, Universidade de Campinas, Campinas, SP, Brasil.

The hypothalamus is a master regulator of energy balance in the body. First-order hypothalamic neurons localized in the arcuate nucleus sense systemic signals that indicate the energy stores in the body. Through distinct projections, arcuate nucleus neurons communicate with second-order neurons, which are mostly localized in the paraventricular nucleus and in the lateral hypothalamus.

View Article and Find Full Text PDF

Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity.

Cell Res

January 2025

Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.

Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!