Reciprocal regulation of inflammation and lipid metabolism by liver X receptors.

Nat Med

Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.

Published: February 2003

Macrophages have important roles in both lipid metabolism and inflammation and are central to the pathogenesis of atherosclerosis. The liver X receptors (LXRs) are established mediators of lipid-inducible gene expression, but their role in inflammation and immunity is unknown. We demonstrate here that LXRs and their ligands are negative regulators of macrophage inflammatory gene expression. Transcriptional profiling of lipopolysaccharide (LPS)-induced macrophages reveals reciprocal LXR-dependent regulation of genes involved in lipid metabolism and the innate immune response. In vitro, LXR ligands inhibit the expression of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase (COX)-2 and interleukin-6 (IL-6) in response to bacterial infection or LPS stimulation. In vivo, LXR agonists reduce inflammation in a model of contact dermatitis and inhibit inflammatory gene expression in the aortas of atherosclerotic mice. These findings identify LXRs as lipid-dependent regulators of inflammatory gene expression that may serve to link lipid metabolism and immune functions in macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm820DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
16
gene expression
16
inflammatory gene
12
liver receptors
8
expression
5
reciprocal regulation
4
inflammation
4
regulation inflammation
4
lipid
4
inflammation lipid
4

Similar Publications

Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data.

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.

View Article and Find Full Text PDF

Progesterone induces meiosis through two obligate co-receptors with PLA2 activity.

Elife

January 2025

Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.

The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality.

View Article and Find Full Text PDF

Chrysanthemum extract mitigates high-fat diet-induced inflammation, intestinal barrier damage and gut microbiota disorder.

Food Funct

January 2025

Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.

An effective intervention for obesity without side effects is needed. Chrysanthemum may be the preferred choice due to its influence in the improvement of glycolipid metabolism. This study assessed the efficacy of chrysanthemum and its flavonoids in mitigating high-fat diet (HFD) induced obesity, focusing on the integrity of the intestinal barrier, inflammation, and gut microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!