We have previously characterized an insulin receptor substrate 1 (IRS-1)-overexpressing beta-cell line. These beta-cells demonstrated elevated fractional insulin secretion and elevated cytosolic Ca(2+) levels compared with wild-type and vector controls. This effect of IRS-1 may be mediated via an interaction with the sarco-endoplasmic reticulum calcium ATPase (SERCA). Here we demonstrate that IRS-1 and IRS-2 localize to an endoplasmic reticulum (ER)-enriched fraction in beta-cells using subcellular fractionation. We also observe co-localization of both IRS-1 and IRS-2 with ER marker proteins using immunofluorescent confocal microscopy. Furthermore, immuno-electron microscopy studies confirm that IRS-1 and SERCA3b localize to vesicles derived from the ER. In Chinese hamster ovary-T (CHO-T) cells transiently transfected with SERCA3b alone or together with IRS-1, SERCA3b co-immunoprecipitates with IRS-1. This interaction is enhanced with insulin treatment. SERCA3b also co-immunoprecipitates with IRS-1 in wild-type and IRS-1-overexpressing beta-cell lines. Ca(2+) uptake in ER-enriched fractions prepared from wild-type and IRS-1-overexpressing cell lines shows no significant difference, indicating that the previously observed decrease in Ca(2+) uptake by IRS-1-overexpressing cells is not the result of a defect in SERCA. Treatment of wild-type beta-cells with thapsigargin, an inhibitor of SERCA, resulted in an increase in glucose-stimulated fractional insulin secretion similar to that observed in IRS-1-overexpressing cells. The colocalization of IRS proteins and SERCA in the ER of beta-cells increases the likelihood that these proteins can interact with one another. Co-immunoprecipitation of IRS-1 and SERCA in CHO-T cells and beta-cells confirms that these proteins do indeed interact directly. Pharmacological inhibition of SERCA in beta-cells results in enhanced secretion of insulin. Taken together, our data suggest that interaction between IRS proteins and SERCA is an important regulatory step in insulin secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M209521200 | DOI Listing |
Backgrounds And Aims: Type 2 diabetes and its complications are assumed to be major public health problems globally. Zinc is one of the elements that play a part in insulin secretion and signaling. Therefore, this study seeks the answer to the following question: "What are the effects of 220 mg zinc sulfate supplementation on the weight, blood pressure, and glycemic control of patients with Type 2 diabetes?".
View Article and Find Full Text PDFFront Nutr
January 2025
Aging and Metabolism Research Program, Oklahoma City, OK, United States.
Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Chemical Engineering, McGill University, Montreal, QC, Canada.
Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.
View Article and Find Full Text PDFJCEM Case Rep
February 2025
Department of Medical Oncology, Kameda General Hospital, Chiba 296-0041, Japan.
Predicting the onset of type 1 diabetes mellitus (T1D) in patients treated with immune checkpoint inhibitors (ICI) remains challenging. ICI-induced T1D (ICI-T1D) is a rare but serious complication that leads to complete insulin depletion. While diabetes-associated autoantibodies, such as glutamic acid decarboxylase antibodies (GADA), are typically absent in non-ICI-related fulminant T1D, they are relatively common in ICI-T1D.
View Article and Find Full Text PDFInt J Pept Res Ther
January 2025
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States 46202.
Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic β-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!