The inner dermis of the sea cucumber, Cucumaria frondosa, is a mutable collagenous tissue characterized by rapid and reversible changes in its mechanical properties regulated by one or more protein effectors that are released from neurosecretory cells. One such effector, tensilin, is a collagen-fibril binding protein, named for its ability to induce dermis stiffening. Tensilin was purified using an affinity column constructed from C. frondosa collagen-fibrils. The protein migrates as a single band on SDS-PAGE (Mr approximately 33 kDa) and has an isoelectric point of 5.8. Equilibrium sedimentation experiments suggest a molecular mass of approximately 28.5-29.4 kDa. Carbohydrate analysis of tensilin revealed no measurable sugar content. The molar amount of tensilin was determined to be 0.38% that of collagen and 47% that of stiparin, a constitutive matrix glycoprotein. A full-length cDNA clone for tensilin was obtained from a C. frondosa inner dermis cDNA expression library. Predicted properties derived from the deduced peptide sequence were in agreement with those of the native protein. A noted feature of tensilin's deduced peptide sequence, particularly in its N-terminal domain, is its homology to tissue inhibitor of metalloproteinases. Tensilin's C-terminal tail has no known homology to other proteins but contains a putative collagen-fibril binding site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0945-053x(02)00090-2DOI Listing

Publication Analysis

Top Keywords

collagen-fibril binding
12
tensilin collagen-fibril
8
cucumaria frondosa
8
inner dermis
8
deduced peptide
8
peptide sequence
8
tensilin
6
purification characterization
4
characterization cloning
4
cloning tensilin
4

Similar Publications

Mechanistic insights on stabilization and destabilization effect of ionic liquids on type I collagen fibrils.

J Mech Behav Biomed Mater

December 2024

Inorganic and Physical Chemical Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Tuned assembly of collagen has tremendous applications in the field of biomedical and tissue engineering owing to its targeted biological functionalities. In this study, ionic liquids choline dihydrogen citrate (CDHC) and diethyl methyl ammonium methane sulfonate (AMS) have been used to regulate the self-assembly of collagen at its physiological pH by probing the assembled systems at certain concentration ratios of ionic liquids and the systems were studied using various characterization methods. Due to interaction with collagen, choline dihydrogen citrate causes delay in the collagen fibrillisation process showing no binding interactions with collagen.

View Article and Find Full Text PDF

Background: Bladder cancer (BC) is very common among cancers of urinary system. It was usually categorized into two types: non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). NMIBC and MIBC groupings are heterogeneous and have different characteristics.

View Article and Find Full Text PDF

The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties.

View Article and Find Full Text PDF

Background: Muscle growth post-birth relies on muscle fiber number and size. Myofibre number, metabolic and contractile capacities are established pre-birth during prenatal myogenesis. The aim of this study was to identify genes involved in skeletal muscle development in cattle, sheep, and pigs - livestock.

View Article and Find Full Text PDF

Excessive posttraumatic scarring in orthopedic tissues, such as joint capsules, ligaments, tendons, muscles, and peripheral nerves, presents a significant medical problem, resulting in pain, restricted joint mobility, and impaired musculoskeletal function. Current treatments for excessive scarring are often ineffective and require the surgical removal of fibrotic tissue, which can aggravate the problem. The primary component of orthopedic scars is collagen I-rich fibrils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!