Highly cross-linked networks formed by the photoinitiated polymerization of multifunctional monomers are finding application in the field of biomaterials because of their chemical versatility, reaction control, and ability to polymerize under physiological conditions. Typically, degradation is introduced into these networks via the cross-links and leads to the release of nondegradable but water-soluble kinetic chains formed during the chain polymerization process. In this study, gel permeation chromatography (GPC) was used to characterize kinetic chain length distributions in highly cross-linked systems that are being developed for orthopedic applications. By polymerizing divinyl monomers to various conversions and subsequently degrading them, we investigated the aspects of network structural evolution related to kinetic chain formation. In general, the average kinetic chain length increased with conversion until the onset of autodeceleration, when the kinetic chains decreased in length as the propagation reaction became diffusion-controlled. The distribution of kinetic chains also changed when different initiation conditions (i.e., initiator concentration and incident light intensity) were used, and a decrease in the kinetic chain lengths was observed at higher initiation rates. Finally, kinetic chain lengths were examined as a function of depth in thick samples polymerized with different light intensities and with a photobleaching initiator. Light attenuation through the sample led to different initiation rates as a function of depth and, consequently, spatial heterogeneity in the network structure as measured by the distributions of kinetic chains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm025677oDOI Listing

Publication Analysis

Top Keywords

kinetic chain
24
kinetic chains
16
chain lengths
12
highly cross-linked
12
kinetic
10
cross-linked networks
8
networks formed
8
formed photoinitiated
8
photoinitiated polymerization
8
divinyl monomers
8

Similar Publications

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Tuning the Selectivity in the Nonoxidative Alkane Dehydrogenation Reaction by Potassium-Promoted Zeolite-Encapsulated Pt Catalysts.

JACS Au

December 2024

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.

The significance of the nonoxidative dehydrogenation of middle-chain alkanes into corresponding alkenes is increasing in the context of the world's declining demands on transportation fuels and the growing demand for chemicals and materials. The middle-chain alkenes derived from the dehydrogenation reaction can be transformed into value-added chemicals in downstream processes. Due to the presence of multiple potential reaction sites, the reaction mechanism of the dehydrogenation of middle-chain alkanes is more complicated than that in the dehydrogenation of light alkanes, and there are few prior studies on elucidating their detailed structure-reactivity relationship.

View Article and Find Full Text PDF

In this research, 3-(trimethoxysilyl)propyl methacrylate (MPS) silane agent was applied to modify the extracted wheat straw (WS) cellulose as a natural biopolymer. Polyacrylonitrile (PAN) was attached to the MPS-modified WS (MPS-WS) via in-situ polymerization to form PAN-WS biocomposite. AO-WS amidoximated biocomposite adsorbent was synthesized through amidoxime reaction and the effects of different parameters including agitation speed, metal ion concentration, and adsorbent dosage on its efficiency of Pb(II) removal were investigated using the Taguchi experimental design method.

View Article and Find Full Text PDF

Infectious Bursal Disease is a highly contagious, immunosuppressive viral disease of young chicks caused by the Infectious Bursal Disease Virus (IBDV). The study was carried out at the National Veterinary Institute (NVI) of Ethiopia to evaluate the competence of the DF-1 cell culture adapted vaccine strain of IBDV as a vaccine candidate. DF-1 cells at passage 27 confluent monolayer was infected with 1 ml of LC-75 vaccine strain virus by adsorption method and recorded as passage 1 (P).

View Article and Find Full Text PDF

This study investigates the effects of homopolymer additives and kinetic traps on the self-assembly of poly(ethylene glycol)-b-poly(lactide) (PEG-PLA) block copolymer (BCP) nanostructures in aqueous environments. By using non-adsorbing PEG homopolymers to kinetically trap PEG-PLA nanostructures, we demonstrate that varying the concentration and molecular weight of the added PEG induces a reversible micelle-to-vesicle transition. This transition is primarily driven by changes in the molecular geometry of the PEG-PLA BCPs due to excluded volume screening effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!