Mice harboring the activity-attenuated Gpdx(a-m2Neu) allele and also harboring a chromosomally integrated lacZ reporter gene to study mutagenesis (pUR288) were used to demonstrate that moderate glucose 6-phosphate dehydrogenase (G6PD) deficiency causes elevated mutagenesis and endogenous oxidative stress in the spleen. G6PD-deficient spleens with a residual enzyme activity of 22% exhibited a dramatic shift in the mutational pattern of lacZ (4.6-fold increase in the prevalence of recombination mutations of lacZ) together with a 1.8-fold increase in mutant frequencies in lacZ. A concomitant 3-fold reduction in catalase activity (dependent upon NADPH) indicated that the in vivo supply of G6PD-generated NADPH was insufficient. An additional 3-fold increase in oxidized glutathione suggested that redox control was disturbed in G6PD-deficient spleens. These findings indicate that G6PD is required for limiting oxidative mutagenesis in the mouse spleen. Gpdx(a-m2Neu) is the first hypomorphic allele of a mouse housekeeping gene associated with elevated somatic mutagenesis in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(02)01243-1DOI Listing

Publication Analysis

Top Keywords

mice harboring
8
hypomorphic allele
8
glucose 6-phosphate
8
6-phosphate dehydrogenase
8
g6pd-deficient spleens
8
mutagenesis
5
redox imbalance
4
imbalance mutagenesis
4
mutagenesis spleens
4
spleens mice
4

Similar Publications

Genetically Engineered Brain Organoids Recapitulate Spatial and Developmental States of Glioblastoma Progression.

Adv Sci (Weinh)

January 2025

Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8127, St. Louis, MO, 63110, USA.

Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, this study develops engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression.

View Article and Find Full Text PDF

Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.

View Article and Find Full Text PDF

Background: Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease.

View Article and Find Full Text PDF

Purpose: Corneal dysmorphologies (CDs) are typically classified as either regressive degenerative corneal dystrophies (CDtrs) or defective growth and differentiation-driven corneal dysplasias (CDyps). Both eye disorders have multifactorial etiologies. While previous work has elucidated many aspects of CDs, such as presenting symptoms, epidemiology, and pathophysiology, the genetic mechanisms remain incompletely understood.

View Article and Find Full Text PDF

DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!