Selenoprotein P (SePP), the major selenoprotein in plasma, has been implicated in selenium transport, selenium detoxification or antioxidant defence. We generated SePP-knockout mice that were viable, but exhibited reduced growth and developed ataxia. Selenium content was elevated in liver, but low in plasma and other tissues, and selenoenzyme activities changed accordingly. Our data reveal that SePP plays a pivotal role in delivering hepatic selenium to target tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223208 | PMC |
http://dx.doi.org/10.1042/BJ20021853 | DOI Listing |
Alzheimers Dement
December 2024
University of Florida / Center for Translational Research in Neurodegenerative Disease, Gainesville, FL, USA.
Background: Vaxxinity is developing an active immunotherapy targeting Tau for Alzheimer's disease (AD) and other tauopathies. VXX-301 is a multi-epitope vaccine designed to target the N-terminal and repeat domains of Tau. This design enables targeting multiple forms of Tau thought to contribute to Tau associated pathologies.
View Article and Find Full Text PDFBackground: Selecting the optimal dose for clinical development is especially problematic for drugs directed at CNS-specific targets. For drugs with a novel mechanism of action, these problems are often greater. We describe Xanamem's clinical pharmacology, including the approach to dose selection and proof-of-concept studies.
View Article and Find Full Text PDFBackground: The hyperphosphorylation, mislocalization, and aggregation of the microtubule associated protein Tau (MAPT) is a driving force in tauopathies, a group of progressive, neurodegenerative disorders. These pathogenic intracellular aggregates, known as neurofibrillary tangles (NFTs), are a hallmark in several diseases such as frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's Disease. While anti-Tau immunotherapies emphasize the clearance of extracellular Tau aggregates, they do not address the intracellular accumulation of NFTs.
View Article and Find Full Text PDFBackground: To improve clinical translatability of non-clinical in-vivo Alzheimer's disease (AD) models, a humanized APP knock-in mouse model (APP) was recently created (Xia, D. et al., 2022).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California San Diego, La Jolla, CA, USA.
Background: Our lab has developed a CRISPR-based, gene-editing strategy that targets the extreme C-terminus (C-term) of APP (amyloid precursor protein) - a gene with a central and indisputable role in AD. We have reported previously that APP C-terminus CRISPRs effectively attenuate APP β-cleavage and Alzheimer's pathology in vivo. Here, we present new data demonstrating the feasibility and efficacy of a clinically-viable, "all-in-one" therapeutic vector that has all the components needed for APP C-terminus editing (Cas enzyme / gRNAs / regulatory elements) packaged into a single AAV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!