Direct oceanic disposal of fossil fuel CO2 is being considered as a possible means to moderate the growth rate of CO2 in the atmosphere. We have measured the rise rate and dissolution rate of freely released CO2 droplets in the open ocean to provide fundamental data for carbon sequestration options. A small amount of liquid CO2 was released at 800 m, at 4.4 degrees C, and the rising droplet stream was imaged with a HDTV camera carried on a remotely operated vehicle. The initial rise rate for 0.9-cm diameter droplets was 10 cm/s at 800 m, and the dissolution rate was 3.0 micromol cm(-2) s(-1). While visual contact was maintained for 1 h and over a 400 m ascent, 90% of the mass loss occurred within 30 min over a 200 m ascent above the release point. Images of droplets crossing the liquid-gas-phase boundary showed formation of a gas head, pinching off of a liquid tail, and rapid gas bubble separation and dissolution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es025909rDOI Listing

Publication Analysis

Top Keywords

co2 droplets
8
rise rate
8
dissolution rate
8
co2
5
rate
5
experimental determination
4
determination fate
4
fate rising
4
rising co2
4
droplets
4

Similar Publications

Study of CO-hydrate formation in contact with bulk nanobubbles: An investigation from experiment and molecular-dynamics simulations.

J Colloid Interface Sci

January 2025

School of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland. Electronic address:

Hypothesis: Nanobubbles (NBs) have been extensively investigated as a sustainable promoter for gas hydrate nucleation, which also contribute to the hydrate memory effect. However, less attention afforded to their effects on the hydrate-growth process, thus lacking a complete perspective of the overall effects from NBs on hydrate formation. We hypothesize that their effect on CO hydrate growth may vary depending on the properties of NBs.

View Article and Find Full Text PDF

Dissociation of Macromolecules in Laser-Heated Droplets Monitored by CD-MS.

Anal Chem

January 2025

Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States.

Charge detection mass spectrometry (CD-MS) is used to monitor the dissociation of large (300 kDa to 20 MDa) protein complexes in droplets heated with a 10.6 μm CO laser. In this approach, electrospray ionization (ESI) is used to produce charged droplets containing macromolecular complexes.

View Article and Find Full Text PDF

Supercritical-dense phase CO pipeline transportation has been proven to have excellent economic and safety benefits for long-distance CO transportation in large-scale. Hydrates are easily generated in the high-pressure and low-temperature sections, resulting in blockage, so it is necessary to build the prediction model for hydrate formation in the long-distance CO pipeline transportation. In the prediction model of hydrate formation of our work, the phase equilibrium was determined by the Chen-Guo model, and the lateral growth of hydrate was calculated by the comprehensive growth model, and the hydrate growth was estimated by analogy with the condensation process.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the airborne transmission risk of SARS-CoV-2 in various indoor settings, using carbon dioxide levels to gauge infection risk.
  • Results show that certain environments, like homes and hospitals, have much higher transmission risks than others, such as college classrooms and public transportation, especially when masks are not worn.
  • Mask-wearing and improved ventilation significantly reduce these risks, indicating effective strategies for preventing airborne transmission in indoor spaces.
View Article and Find Full Text PDF

Spontaneous Generation of CHCN from Acetonitrile at the Air-Water Interface.

J Am Chem Soc

November 2024

The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China.

Acetonitrile (CHCN) is considered a very stable molecule in aqueous solutions, and its deprotonation to produce strongly basic CHCN requires harsh conditions. CHCN is also present in the atmosphere, but its chemical transformation pathway at the air-water interface is unknown. In this study, we discovered and verified the unprecedented spontaneous generation of CHCN from the CHCN-HO solution at the air-water interface of microdroplets, and revealed the indirect deprotonation mechanism of CHCN by synergistic redox of OH and electrons in the microdroplets through the capture of key intermediates and computational chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!