The vitamin D receptor (VDR) is known to mediate the biological actions of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) through its ability to regulate cellular programs of gene expression. We identified VDR- and retinoid X receptor (RXR)-interacting LXXLL peptides using a mammalian two-hybrid system and examined whether these molecules could block vitamin D and 9-cis retinoic acid (9-cis RA) response. Peptides were identified that were reactive to RXR alone as well as to both VDR and RXR. Peptide fusion proteins were then examined in MC3T3 E1 cells for their ability to block induction of the osteocalcin promoter by 1,25(OH)(2)D(3) or stimulation of an RARE-TK reporter by 9-cis RA. Peptides that interacted with both VDR and RXR blocked 1,25(OH)(2)D(3)-dependent transcription by up to 75%. Peptides that interacted with RXR blocked 9-cis RA induced transcription. Two RXR-interacting peptides, however, were also found to block 1,25(OH)(2)D(3) response effectively. These studies support the idea that comodulator recruitment is essential for VDR- and RXR-mediated gene expression and that RXR is required for 1,25(OH)(2)D(3)-induced osteocalcin gene transcription. This approach may represent a novel means of assessing the contribution of RXR in various endogenous biological responses to 1,25(OH)(2)D(3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.10336 | DOI Listing |
Development
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.
View Article and Find Full Text PDFChem Biodivers
January 2025
Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.
Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFJ Virol
January 2025
Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.
Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!