Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanism of the elevation of intracellular glutathione induced by low-dose gamma-rays was examined in RAW 264.7 cells. The expression of mRNA for gamma-glutamylcysteine synthetase (gamma-GCS) increased soon after gamma-ray (0.5 Gy) irradiation, and peaked between 3 h and 6 h post-irradiation. A dose of 0.25 to 0.5 Gy was optimum for induction of gamma-GCS mRNA expression at 3 h post-irradiation. The effect of inhibitors of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB) on the radiation-induced gamma-GCS gene expression was then examined. The induction of gamma-GCS mRNA expression was significantly suppressed when AP-1 DNA binding, but not NF-kappaB DNA binding, was inhibited. Finally, electrophoretic mobility shift assay showed that the low-dose radiation markedly increased the DNA binding of AP-1, but not NF-kappaB, soon after irradiation. These results suggest that the increase of glutathione levels in RAW 264.7 cells by low-dose gamma-ray irradiation is mediated by transcriptional regulation of the gamma-GCS gene, predominantly through the AP-1 binding site in its promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.26.19 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!