A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aorsin, a novel serine proteinase with trypsin-like specificity at acidic pH. | LitMetric

Aorsin, a novel serine proteinase with trypsin-like specificity at acidic pH.

Biochem J

Laboratory of Molecular Enzymology, Department of Bioengineering, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.

Published: April 2003

A proteinase that hydrolyses clupeine and salmine at acidic pH, called aorsin, was found in the fungus Aspergillus oryzae. Purified aorsin also hydrolysed benzyloxycarbonyl-Arg-Arg-4-methylcoumaryl-7-amide optimally at pH 4.0. The specificity of aorsin appeared to require a basic residue at the P(1) position and to prefer paired basic residues. Aorsin activated plasminogen and converted trypsinogen to trypsin. The trypsin-like activity was inhibited strongly by antipain or leupeptin, but was not inhibited by any other standard inhibitors of peptidases. To identify the catalytic residues of aorsin, a gene was cloned and an expression system was established. The predicted mature protein of aorsin was 35% identical with the classical late-infantile neuronal ceroid lipofuscinosis protein CLN2p and was 24% identical with Pseudomonas serine-carboxyl proteinase, both of which are pepstatin-insensitive carboxyl proteinases. Several putative catalytic residues were mutated. The k (cat)/ K(m) values of the mutant enzymes Glu(86)-->Gln, Asp(211)-->Asn and Ser(354)-->Thr were 3-4 orders of magnitude lower and Asp(90)-->Asn was 21-fold lower than that of wild-type aorsin, indicating that the positions are important for catalysis. Aorsin is another of the S53 family serine-carboxyl proteinases that are not inhibited by pepstatin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223285PMC
http://dx.doi.org/10.1042/BJ20021691DOI Listing

Publication Analysis

Top Keywords

aorsin
9
residues aorsin
8
catalytic residues
8
aorsin novel
4
novel serine
4
serine proteinase
4
proteinase trypsin-like
4
trypsin-like specificity
4
specificity acidic
4
acidic proteinase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!