Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rat limb allograft recipients represent surgically induced, immediately vascularized bone marrow transplant (VBMT) chimeras. The majority of these chimeras undergo tolerance while a minority develop graft versus host disease (GVHD). T-cell chimerism and associated mechanisms of cellular immune nonresponsiveness were investigated in tolerant VBMT chimeras. A strong correlation (p < 0.01) was observed between the clinical onset of GVHD and levels of donor T-cell chimerism approximating or greater than 50%. However, stable mixed chimerism was associated with tolerance. In conclusion, three major sequential mechanisms of immune nonresponsiveness were elucidated in tolerant VBMT chimeras over time and included development of nonspecific suppressor cells (which potentially represent natural suppressor cells), maturation of antigen-specific suppressor cell circuits, and eventually putative clonal inactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/000000002783985459 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!