Structural characterization of chromosome I size variants from a natural yeast strain.

Yeast

Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Jordi Girona 18, 08034 Barcelona, Spain.

Published: January 2003

Many yeast strains isolated from the wild show karyotype instability during vegetative growth, with rearrangement rates of up to 10(-2) chromosomal changes per generation. Physical isolation and analysis of several chromosome I size variants of one of these strains revealed that they differed only in their subtelomeric regions, leaving the central 150 Kb unaltered. Fine mapping of these subtelomeric variable regions revealed gross alterations of two very similar loci, FLO1 and FLO9. These loci are located on the right and left arms, respectively, of chromosome I and encompass internal repetitive DNA sequences. Furthermore, some chromosome I variants lacking the FLO1 locus showed evidence of recombination at a DNA region on their right arm that is enriched in repeated sequences, including Ty LTRs. We propose that repetitive sequences in many subtelomeric regions in S. cerevisiae play a key role in karyotype hypervariability. As these regions encode several membrane-associated proteins, subtelomeric plasticity may allow rapid adaptive changes of the yeast strain to specific substrates. This pattern of semi-conservative chromosomal rearrangement may have profound implications, both in terms of evolution of wild strains and for biotechnological processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.955DOI Listing

Publication Analysis

Top Keywords

chromosome size
8
size variants
8
yeast strain
8
subtelomeric regions
8
structural characterization
4
chromosome
4
characterization chromosome
4
variants natural
4
natural yeast
4
strain yeast
4

Similar Publications

Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.

Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) leveraging endophenotypes beyond case/control diagnosis, such as brain amyloid β pathology, have shown promise in identifying novel variants and understanding their potential functional impact. In this study, we leverage two brain amyloid β pathology measurement modalities, PET imaging and neuropathology, to address sample size limitations and to discover novel genetic drivers of disease.

Method: We conducted a meta-analysis on an amyloid PET imaging GWAS (N = 7,036, 35% amyloid positive, 53.

View Article and Find Full Text PDF

Background: Adults with Down syndrome (DS) develop Alzheimer's disease (AD) brain pathology by their 40s due to triplication of the amyloid precursor protein (APP) gene on chromosome 21, and most develop clinical symptoms by age 50-60. Inheritance of the apolipoprotein E (apoE) ε4 allele (APOE4) is the strongest risk factor for AD besides age, whereas the ε3 allele (APOE3) does not change AD risk. The APOE4 genotype is associated with earlier and more rapid cognitive decline in both typical AD and DS-associated AD (DS-AD); however, understanding of the associated mechanisms is lacking.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Academia Sinica, Taipei, Taiwan.

Background: There is a strong genetic component to Alzheimer's disease (AD), as evidenced in genome-wide association studies (GWASs) that have identified new variants associated with the disease. This is particularly true for the apolipoprotein E (APOE) gene and its neighboring genes on chromosome 19q13.3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!