Clofibrate is a hypolipidemic drug belonging to the peroxisome proliferator (PP) family. PPs are well-recognized hepatocarcinogens, though only for rodents and not for humans. Their oncogenicity is usually ascribed to mitogenic or antiapoptotic action. However, we have reported that clofibrate can trigger fast and extensive apoptosis in rodent and human tumor cell lines. The present study examines the possible mechanisms involved in clofibrate-induced apoptosis in AH-130 hepatoma cells. The results show that the apoptogenic effect of clofibrate does not depend on induction of peroxisome proliferator activated receptors (PPARs), but on interference with HMG-CoA reductase (HMGR), a key enzyme that regulates cholesterol biosynthesis and production of isoprenoid units for protein farnesylation. The level and activity of HMGR mRNA are reduced in clofibrate-treated AH-130 cells and apoptosis can be partially prevented by addition of mevalonate. Moreover, cholesterol and cholesterol ester content decreases early in mitochondria, and cytocrome c is released in the cytosol. On the contrary, perturbations at the level of protein farnesylation are not important in determining the fast apoptogenic effect, since treatment of AH-130 cells with an inhibitor of farnesyltransferase induces apoptosis only after 4 h. In conclusion, inhibition of HMGR and decreased cholesterol content are crucial events in clofibrate-induced apoptosis in AH-130 hepatoma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1194/jlr.m200072-jlr200 | DOI Listing |
Physiol Rep
September 2024
Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
Cancer cachexia manifests as whole body wasting, however, the precise mechanisms governing the alterations in skeletal muscle and cardiac anabolism have yet to be fully elucidated. In this study, we explored changes in anabolic processes in both skeletal and cardiac muscles in the Yoshida AH-130 ascites hepatoma model of cancer cachexia. AH-130 tumor-bearing rats experienced significant losses in body weight, skeletal muscle, and heart mass.
View Article and Find Full Text PDFAims: Cachexia, a common manifestation of malignant cancer, is not only associated with weight loss, but also with severe cardiac atrophy and impaired cardiac function. Here, we investigated the effects of ACM-001 (0.3 or 3 mg/kg/day) in comparison to carvedilol (3 or 30 mg/kg/day), metropolol (50 or 100 mg/kg/day), nebivolol (1 or 10 mg/kg/day) and tertatolol (0.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2023
Departament de Bioquímica i Biomedicina Molecular, Cancer Research Group, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.
J Cachexia Sarcopenia Muscle
April 2020
Charite Medical School, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.
Background: Cachexia, a common manifestation of malignant cancer, is associated with wasting of skeletal muscle and fat tissue. In this study, we investigated the effects of a new first in class anabolic catabolic transforming agent on skeletal muscle in a rat model of cancer cachexia.
Methods: Young male Wistar Han rats were intraperitoneally inoculated with 10 Yoshida hepatoma AH-130 cells and once daily treated with 0.
J Cell Physiol
January 2020
Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
Muscle wasting is associated with chronic diseases and cancer. Elucidation of the biological mechanism involved in the process of muscle mass loss and cachexia may help identify therapeutic targets. We hypothesized that l-carnitine treatment may differentially revert muscle fiber atrophy and other structural alterations in slow- and fast-twitch limb muscles of rats bearing the Yoshida ascites hepatoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!