A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Toward hybrid molecular/semiconductor information storage devices. | LitMetric

Redox kinetics were measured for two electroactive molecules attached to Si(100) surfaces, a ferrocene (Fc-BzOH) and a Zn(II) trimesitylporphyrin (Por-BzOH). Each molecule was derivatized with a benzyl alcohol linker for attachment to the Si surface via the formation of a Si-O bond. A complete protocol was developed for the preparation of stable Si(100) surfaces derivatized with the electroactive molecules. The redox-kinetic measurements were performed on the resulting Fc-BzOH and Por-BzOH monolayers to probe (1) the rate of electron transfer (k0) for oxidation in the presence of applied potentials and (2) the rate of charge dissipation after the applied potential is disconnected (in the form of a charge-retention half-life t1/2). The k0 values for the two types of monolayers were found to be similar to one another as were the t1/2 values. Perhaps more importantly, the electron-transfer rates for both the Fc-BzOH and the Por-BzOH monolayers differ from the charge-dissipation rates by approximately 6 orders of magnitude and are strongly dependent on the surface concentration of the electroactive species. For the Por-BzOH monolayers on Si(100), the k0 and t1/2 values and their trends as a function of surface coverage were determined to be similar to those previously measured for the analogous thiol-derivatized molecule assembled on Au(111). In contrast, the Fc-BzOH monolayers on Si(100) were found to exhibit much slower electron-transfer and charge-dissipation rates than those in the corresponding thiol-Au(111) case. Two alternative hypotheses are advanced to explain both the diminution in rates with increased surface coverage and the contrasting behavior with the analogous thiols on Au, one based on space-charge effects at the monolayer-solution interface, and a second relying on changes in distance of the redox centers from the surface as modulated by the orientation of the linking chains. Collectively, the ability to prepare and study stable, electroactive molecular media on Si(100) is likely to be key in the development of hybrid molecular/semiconductor devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja021169aDOI Listing

Publication Analysis

Top Keywords

monolayers si100
12
por-bzoh monolayers
12
t1/2 values
12
electron-transfer rates
8
hybrid molecular/semiconductor
8
electroactive molecules
8
si100 surfaces
8
fc-bzoh por-bzoh
8
charge-dissipation rates
8
surface coverage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!