Post-menopausal estrogen therapy is associated with a decreased incidence of Alzheimer disease and in vitro models have shown that 17beta-estradiol is effective in lowering amyloidogenic processing. To examine the effects of estrogen withdrawal and replacement on amyloid beta (Abeta) levels and amyloid beta-protein precursor (AbetaPP) processing in vivo, Swedish mutant AbetaPP transgenic mice were ovariectomized or sham ovariectomized at four weeks of age and treated with placebo or 17beta- or 17alpha-estradiol pellets, the latter being a weak estrogen receptor agonist. Compared to sham ovariectomized mice, ovariectomy with placebo did not alter Abeta levels; however, the levels of Abeta were decreased by 27% and 38% in mice treated with 17beta- and 17alpha- estradiol, respectively, with no change in AbetaPP holoprotein. Endogenous and exogenous estrogen both significantly increased the levels of sAbetaPPalpha, the secreted form of AbetaPP. The ratio of Abeta/sAbetaPPalpha, a measure of amyloidogenic processing, was reduced in all estrogen-containing groups. The Abeta lowering effect of 17beta- and 17alpha-estradiol was replicated when estrogens were administered at a more physiological dose in the drinking water, or when mice were ovariectomized at three months of age. The increased efficacy of 17alpha-estradiol versus 17beta-estradiol may help to develop safe and effective therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.3233/jad-2002-4601DOI Listing

Publication Analysis

Top Keywords

effective lowering
8
transgenic mice
8
amyloidogenic processing
8
abeta levels
8
mice ovariectomized
8
sham ovariectomized
8
17beta- 17alpha-estradiol
8
levels
5
mice
5
17alpha-estradiol
4

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

Background: To investigate the effect of Midnight-noon Ebb-flow combined with five-element music therapy in the continuous nursing of patients with chronic wounds.

Methods: From March 2022 to November 2023, we recruited 50 eligible chronic wound patients and randomly divided them into two groups according to a random number table: the experimental group (n = 25) and the control group (n = 25). The control group was treated with conventional nursing measures.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.

Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.

View Article and Find Full Text PDF

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!