Unlabelled: This study used PET to measure the time course of the brain concentration of (18)F-labeled N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate (FK960), a novel antidementia drug, after oral administration to conscious rhesus monkeys.

Methods: Three young-adult male rhesus monkeys were tested. FK960 (0.1 mg/kg) containing about 370 MBq of (18)F-FK960 was administered orally to each monkey. Dynamic PET images were acquired for 4 h from 5 min after the administration. Arterial blood samples were withdrawn during PET scanning and were analyzed by an automatic well gamma-counter and thin-layer chromatography to determine the time course of authentic (18)F-FK960 activity concentration in plasma. FK960 concentrations in brain and plasma were calculated in units of mol/L using the specific activity of FK960 preparations.

Results: (18)F-FK960 penetrated the blood-brain barrier and underwent perfusion-dependent distribution in the entire brain. Maximal concentrations in the brain and plasma were 1.11 +/- 0.30 x 10(-7) mol/L (at 3.0 +/- 0.6 h after administration) and 4.04 +/- 1.29 x 10(-7) mol/L (at 2.0 +/- 1.1 h after administration), respectively.

Conclusion: We succeeded in measuring the FK960 concentration in the brains of conscious monkeys and in plasma after oral administration at a dose of 0.1 mg/kg. The results suggested that this method can measure the FK960 concentration in the human brain, and a potential use of the PET technique in drug development was demonstrated.

Download full-text PDF

Source

Publication Analysis

Top Keywords

brain concentration
8
novel antidementia
8
antidementia drug
8
conscious rhesus
8
rhesus monkeys
8
time course
8
oral administration
8
concentrations brain
8
brain plasma
8
10-7 mol/l
8

Similar Publications

Hair Cortisol in Young Children with Autism and Their Parents: Associations with Child Mental Health, Eating Behavior and Weight Status.

J Autism Dev Disord

January 2025

Sarr Autism Rotterdam, Youz Child- and Adolescent Psychiatry, Parnassia Group, Dynamostraat 18, Rotterdam, The Netherlands.

Children with autism and their parents face daily challenges that may be stressful for both. However, little is known about biological stress (hair cortisol concentrations [HCC]) in these families and its connection to children's health outcomes. This study investigates biological stress in children with autism and their parents and its associations with child mental health, eating behavior and BMI.

View Article and Find Full Text PDF

Background: Cognitive impairment (CI) is a condition in which an individual experiences noticeable impairment in thinking abilities. Long-term exposure to aluminum (Al) can cause CI. This study aimed to determine the relationship between CI and MRI-related changes in postroom workers exposed to Al.

View Article and Find Full Text PDF

Background: The approval of new disease-modifying therapies by the U.S. Food and Drug Administration and the European Medicine Agency makes it necessary to optimize non-invasive and cost-effective tools for the identification of subjects at-risk of developing Alzheimer's Disease (AD).

View Article and Find Full Text PDF

Environmental endocrine disruptor chemicals (EDCs) have raised significant concerns due to their potential adverse effects on human health, particularly on the central nervous system (CNS). This study provides a comparative analysis of the effects of 17-alpha ethinyl estradiol (EE2) and diethyl phthalate (DEP) on neuronal cell proliferation and neurotoxicity. Using differentiated SH-SY5Y human neuronal cells, we evaluated cell viability, microRNA (miRNA) regulation, and RNA expression following exposure to subtoxic concentrations of EE2 and DEP.

View Article and Find Full Text PDF

Development of a Genetically Encoded Sensor for Arginine.

ACS Sens

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

The amino acid l-arginine (Arg) plays important roles in multiple metabolic and physiological processes, and changes in its concentration have been implicated in pathological processes. While it is important to measure Arg levels in biological systems directly and in real-time, existing Arg sensors respond to l-ornithine or l-lysine. Here we report ArgS1, a new Arg sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!