Heteromorphic hybrid duplex DNA complexes are duplex states, other than perfectly matched duplexes, that can form when single strands comprising several different perfectly matched duplexes are simultaneously present in solution. Such cross-hybridization "side reactions" are of particular nuisance in multiplex reaction schemes, where many strands are designed to hybridize in parallel fashion with only their corresponding perfect complement strand. Relative to the perfect match duplexes, the sequence dependent features of these heteromorphic duplex states and their thermodynamic stability are an important consideration for multiplex hybridization reaction design. We have measured absorbance versus temperature melting curves and performed differential scanning calorimetry measurements on various mixtures of eight different 24 base single strands. When perfect complementary pairs of strands are mixed in single reactions, four perfectly matched duplexes form. When mixtures of strands that are not perfectly matched are prepared and analyzed, melting transitions for cross-hybridization are observed along with significant hyperchromicity changes. This is indicative of a melting hybrid, heteromorphic duplex states formed from two nonperfectly matched strands. In addition, when both the perfectly matched and noncomplementary strands are mixed together (in multiplex hybridization reactions) at molar ratios of 1:1, 3:1, and 1:3, evidence of perfect duplex and heteromorphic duplex complexes is found in all cases. A new analytical tool for considering heterogeneous, duplex complexes in multiplex hybridization mixtures is presented and employed to interpret the acquired melting data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja027955x | DOI Listing |
Protein Sci
February 2025
Amherst College, Amherst, Massachusetts, USA.
Hydrogen exchange mass spectrometry (HXMS) is a powerful tool to understand protein folding pathways and energetics. However, HXMS experiments to date have used exchange conditions termed EX1 or EX2 which limit the information that can be gained compared to the more general EXX exchange regime. If EXX behavior could be understood and analyzed, a single HXMS timecourse on an intact protein could fully map its folding landscape without requiring denaturation.
View Article and Find Full Text PDFInorg Chem
January 2025
CNRS, University of Bordeaux, Bordeaux INP, ICMCB UMR CNRS 5026, F-33600 Pessac ,France.
The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA.
In numerous applications from radio to optical frequencies including stealth and energy harvesting, there is a need to design electrically thin layers capable of perfectly absorbing electromagnetic waves over a wide bandwidth. However, a theoretical upper bound exists on the bandwidth-to-thickness ratio of metal-backed, passive, linear, and time-invariant absorbing layers. Absorbers developed to date, irrespective of their operational frequency range or material thickness, significantly underperform when compared to this upper bound, failing to exploit the full potential that passive, linear, and time-invariant systems can provide.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
We examined the intricate mechanisms underlying visual processing of complex motion stimuli by measuring the detection sensitivity to contraction and expansion patterns and the discrimination sensitivity to the location of the center of motion (CoM) in various real and unreal optic flow stimuli. We conducted two experiments (N = 20 each) and compared responses to both "real" optic flow stimuli containing information about self-movement in a three-dimensional scene and "unreal" optic flow stimuli lacking such information. We found that detection sensitivity to contraction surpassed that to expansion patterns for unreal optic flow stimuli, whereas this trend was reversed for real optic flow stimuli.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy.
In polymer science and technology, the distinction between thermoplastic and thermosetting materials has always been sharp, clear, and well-documented: indeed, the former can theoretically be reprocessed a potentially infinite number of times by heating, forming, and subsequent cooling. This cannot be done in the case of thermosetting polymers due to the presence of cross-links that covalently bind the macromolecular chains, giving rise to insoluble and infusible polymeric networks. In 2011, the discovery of vitrimers revolutionized the classification mentioned above, demonstrating the possibility of using new materials that consist of covalent adaptable networks (CANs): this way, they can change their topology through thermally-activated bond-exchange reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!