This work shows that very high-field EPR spectroscopy allows a rather accurate determination of the g-tensor of protein radicals, including C-centered ones, and thus may be used as a probe for distinguishing a tyrosyl-, a glycyl-, or a tryptophanyl-radical. In this paper, we report the first complete analysis of the g-tensor of glycyl radical enzymes (anaerobic ribonucleotide reductase, pyruvate formate lyase, and benzylsuccinate synthase), thus providing new information on their EPR properties. Because the g-anisotropy is small, the complete resolution of the g-tensor could be only obtained at very high field (18.8 T).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja026690j | DOI Listing |
Inorg Chem
December 2024
Department of Chemistry, University of California, Berkeley, California 94720, United States.
The construction of multinuclear lanthanide-based molecules with significant magnetic exchange interactions represents a key challenge in the realization of single-molecule magnets with high operating temperatures. Here, we report the synthesis and magnetic characterization of two series of heterobimetallic compounds, (Cp*Ln)(μ-Co(pdt)) (Ln = Y, Gd, Dy; pdt = 1,2-diphenylethylenedithiolate) and [K(18-crown-6)][(Cp*Ln)(μ-Co(pdt))] (Ln = Y, Gd), featuring two lanthanide centers bridged by a cobalt bis(1,2-dithiolene) complex. Dc magnetic susceptibility data collected for the Gd congeners indicate significant Gd-Co ferromagnetic exchange interactions with fits affording = +11.
View Article and Find Full Text PDFJ Magn Reson
December 2024
Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address:
We have prepared trityl radicals with protons at the positions of the -COOH group in the phenyl rings and examined their EPR spectra, which show large - hyperfine couplings, and their dynamic nuclear polarization (DNP) Zeeman field profiles . By assessing these polarizing agents for high-field and Overhauser effect DNP, we gain insight into the roles that these hyperfine couplings and other molecular properties play in the DNP performance of these radicals. Interestingly, we do not observe OE DNP in any of the three molecules we examined.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
The most common lattice defect in high-pressure high-temperature (HPHT) diamonds is the nitrogen substitution (P1) center. This is a paramagnetic defect with a single unpaired electron spin coupled to a N nuclear spin forming an = 1/2, = 1 spin system. While P1 centers have been studied by electron paramagnetic resonance (EPR) spectroscopy for decades, only recently did their behavior at ultra-high (>12 T) magnetic fields become of interest.
View Article and Find Full Text PDFJ Mater Chem B
November 2024
Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
Research on high-field magnetic resonance imaging (HF-MRI) has been increased in recent years, aiming to improve diagnosis accuracy by increasing the signal-to-noise ratio and hence image quality. Conventional contrast agents (CAs) have important limitations for HF-MRI, with the consequent need for the development of new CAs. Among them, the most promising alternatives are those based on Dy or Ho compounds.
View Article and Find Full Text PDFSci Adv
August 2024
School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel.
In this work, we demonstrate the first pulsed electron paramagnetic resonance (EPR) experiments performed under magic angle spinning (MAS) at high magnetic field. Unlike nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), commonly performed at high magnetic fields and under MAS to maximize sensitivity and resolution, EPR is usually measured at low magnetic fields and, with the exception of the Spiess group work in the late 1990s, never under MAS, due to great instrumentational challenges. This hampers the investigation of DNP mechanisms, in which electron spin dynamics play a central role, because no experimental data about the latter under DNP-characteristic conditions are available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!