AI Article Synopsis

  • The study focuses on the distribution of voltage-gated N-type calcium channels in the mouse cerebellum, which are crucial for the release of neurotransmitters.
  • Findings show that the alpha1B subunit of these channels is mainly present on the cell bodies and specific dendrites of Purkinje cells, forming identifiable patterns.
  • Understanding this distribution could help future research investigate how calcium channels contribute to neurological functions and pathways.

Article Abstract

Secretion of neurotransmitters is initiated by voltage-gated calcium influx through presynaptic, voltage- gated N-type calcium channels. However, little is known about their cellular distribution in the mouse cerebellum. In the cerebellum, alpha1B immunoreactivity is found mainly on the cell bodies of all Purkinje cells. In addition, the immunoreactivity was detected on a subset of Purkinje cell dendrites, clustered to form a parasagittal array of bands. In the anterior lobe vermis, immunoreactive Purkinje cell dendrites form narrow stripes separated by broad bands of unstained dendrites. Moving caudally through the vermis, these stripes become thicker as a larger fraction of the Purkinje cell dendrites become immunoreactive. This localization study of the alpha1B pore-forming subunits in mouse cerebellum may guide future investigations of the role of calcium channels in neurological pathways.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mouse cerebellum
12
purkinje cell
12
cell dendrites
12
voltage-gated calcium
8
calcium channels
8
immunohistochemistry voltage-gated
4
calcium
4
calcium channel
4
channel alpha1b
4
alpha1b subunit
4

Similar Publications

Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles.

View Article and Find Full Text PDF

The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers.

View Article and Find Full Text PDF

Dynamic mitophagy trajectories hallmark brain aging.

Autophagy

December 2024

Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.

Studies using mitophagy reporter mice have established steady-state landscapes of mitochondrial destruction in mammalian tissues, sparking intense interest in basal mitophagy. Yet how basal mitophagy is modified by healthy aging in diverse brain cell types has remained a mystery. We present a comprehensive spatiotemporal analysis of mitophagy and macroautophagy dynamics in the aging mammalian brain, reporting critical region- and cell-specific turnover trajectories in a longitudinal study.

View Article and Find Full Text PDF

Spall: accurate and robust unveiling cellular landscapes from spatially resolved transcriptomics data using a decomposition network.

BMC Bioinformatics

December 2024

Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China.

Recent developments in spatially resolved transcriptomics (SRT) enable the characterization of spatial structures for different tissues. Many decomposition methods have been proposed to depict the cellular distribution within tissues. However, existing computational methods struggle to balance spatial continuity in cell distribution with the preservation of cell-specific characteristics.

View Article and Find Full Text PDF

The Jun dimerization protein (Jdp2) gene is active in mouse cerebellar granule cells and its protein product plays a crucial role in the formation of the cerebellum lobes through programmed cell death. However, the role of Jdp2 in cellular differentiation and pluripotency in the cerebellum, and the effect of the antioxidation reaction on cell plasticity, remain unknown. N-acetyl-L-cysteine (NAC) induced the early commitment of the differentiation of granule cell precursors (GCPs) to neurons, especially Purkinje cells, via the γ-aminobutyric acid type A receptor α6 subunit (Gabra6) axis; moreover, Jdp2 depletion enhanced this differentiation program of GCPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!