Group I metabotropic glutamate receptors (mGluRs) 1 and 5 frequently colocalize in the same neurons throughout the CNS. Because both receptors can couple to the same effector systems, the purpose of their cellular coexpression remains unclear. Here, we report that group I mGluR1 and mGluR5 have distinct functional roles in type II neurons of the rat globus pallidus (GP). Type II GP neurons form a large population of GABAergic projection neurons that are characterized by the presence of inwardly rectifying current I(h), low-threshold voltage-activated calcium current I(t), and activity at rest. Although immunocytochemical analysis reveals a high degree of neuronal colocalization of the two group I mGluRs in the GP, activation of mGluR1 only directly depolarizes type II GP neurons. Interestingly, blockade of mGluR5 by a highly selective antagonist, methylphenylethynylpyridine, leads to the potentiation of the mGluR1-mediated depolarization in this neuronal subpopulation. Metabotropic GluR1 desensitizes during repeated activation with the agonist in type II GP neurons, and blocking mGluR5 prevents the desensitization of the mGluR1-mediated depolarization. Elimination of the activity of protein kinase C (PKC) by an application of 1 microm bisendolylmaleimide or 1 microm chelerythrine, both protein kinase C inhibitors, potentiates the mGluR1-mediated response and prevents the desensitization of mGluR1 in type II GP neurons, suggesting that the effect of mGluR5 on mGluR1 signaling may involve PKC. Together, these data illustrate a novel mechanism by which mGluR1 and mGluR5, members of the same family of G-protein-coupled receptors, can interact to modulate neuronal activity in the rat GP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742153PMC
http://dx.doi.org/10.1523/JNEUROSCI.23-01-00122.2003DOI Listing

Publication Analysis

Top Keywords

type neurons
20
distinct functional
8
functional roles
8
metabotropic glutamate
8
glutamate receptors
8
rat globus
8
globus pallidus
8
mglur1 mglur5
8
mglur1-mediated depolarization
8
prevents desensitization
8

Similar Publications

SCN10A gene polymorphism is associated with pain sensitivity and postoperative analgesic effects in patients undergoing gynecological laparoscopy.

Eur J Med Res

January 2025

Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China.

Background: Postoperative pain intensity is influenced by various factors, including genetic variations. The SCN10A gene encodes the Nav1.8 sodium channel protein, which is crucial for pain signal transmission in peripheral sensory neurons.

View Article and Find Full Text PDF

Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.

View Article and Find Full Text PDF

Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD metabolism.

Cell Death Dis

January 2025

In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.

Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism.

View Article and Find Full Text PDF

Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.

View Article and Find Full Text PDF

Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!