Phosphatidylinositol polyphosphates (PIPs) are potent modulators of Kir channels. Previous studies have implicated basic residues in the C terminus of Kir6.2 channels as interaction sites for the PIPs. Here we examined the role of the N terminus and identified an arginine (Arg-54) as a major determinant for PIP(2) modulation of ATP sensitivity in K(ATP) channels. Mutation of Arg-54 to the neutral glutamine (R54Q) and, in particular, to the negatively charged glutamate (R54E) impaired PIP(2) modulation of ATP inhibition, while mutation to lysine (R54K) had no effect. These data suggest that electrostatic interactions between PIP(2) and Arg-54 are an essential step for the modulation of ATP sensitivity. This N-terminal PIP(2) site is highly conserved in Kir channels with the exception of the pH-gated channels Kir1.1, Kir4.1, and Kir5.1 that contain a neutral residue at the corresponding positions. Introduction of an arginine at this position in Kir1.1 channels rendered the N-terminal PIP(2) site functional largely increasing the PIP(2) affinity. Moreover, Kir1.1 channels lose the ability to respond to physiological changes of the intracellular pH. These results explain the need of a silent N-terminal PIP(2) site in pH-gated channels and highlight the N terminus as an important region for PIP(2) modulation of Kir channel gating.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M208413200DOI Listing

Publication Analysis

Top Keywords

pip2 modulation
16
modulation atp
16
pip2 site
16
atp sensitivity
12
kir channels
12
n-terminal pip2
12
pip2
10
channels
9
ph-gated channels
8
kir11 channels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!