Hypoxia in tumors is generally associated with chemoresistance and radioresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1) and the multidrug resistance transporter P-glycoprotein (P-gp) has not been investigated. Herein, we demonstrate that with increasing size of DU-145 prostate multicellular tumor spheroids the pericellular oxygen pressure and the generation of reactive oxygen species decreased, whereas the alpha-subunit of HIF-1 (HIF-1alpha) and P-gp were up-regulated. Furthermore, P-gp was up-regulated under experimental physiological hypoxia and chemical hypoxia induced by either cobalt chloride or desferrioxamine. The pro-oxidants H2O2 and buthionine sulfoximine down-regulated HIF-1alpha and P-gp, whereas up-regulation was achieved with the radical scavengers dehydroascorbate, N-acetylcysteine, and vitamin E. The correlation of HIF-1alpha and P-gp expression was validated by the use of hepatoma tumor spheroids that were either wild type (Hepa1) or mutant (Hepa1C4) for aryl hydrocarbon receptor nuclear translocator (ARNT), i.e., HIF-1beta. Chemical hypoxia robustly increased HIF-1alpha as well as P-gp expression in Hepa1 tumor spheroids, whereas no changes were observed in Hepa1C4 spheroids. Hence, our data demonstrate that expression of P-gp in multicellular tumor spheroids is under the control of HIF-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.02-0358fje | DOI Listing |
Biophys Rev
December 2024
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic. Electronic address:
Platinum(IV) compounds possess distinct properties that set them apart from platinum(II) compounds. Often designed as prodrugs, they are reduced within cancer cells to their active platinum(II) form, enabling their cytotoxic effects. Their versatility also lies in their ability to be functionalized and conjugated with bioactive molecules to enhance cancer cell targeting.
View Article and Find Full Text PDFBiol Res
January 2025
Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
Background: Gastric cancer (GC) is a significant cancer-related cause of death worldwide. GC's most used chemotherapeutic regimen is based on platinum drugs such as cisplatin (CDDP). However, CDDP chemoresistance reduces the survival rate of advanced GC.
View Article and Find Full Text PDFCell Rep Methods
January 2025
Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Medicine, Center for Infectious Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden. Electronic address:
We present an easy-to-use, disposable, thermoplastic microwell chip designed to support screening and high-resolution imaging of single-cell behavior in two- and three-dimensional (2D and 3D) cell cultures. We show that the chip has excellent optical properties and provide simple protocols for efficient long-term cell culture of suspension and adherent cells, the latter grown either as monolayers or as hundreds of single, uniformly sized spheroids. We then demonstrate the applicability of the system for single-cell analysis by correlating the dynamic cytotoxic response of single immune cells grown under different metabolic conditions to their intracellular cytolytic load at the end of the assay.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden. Electronic address:
In recent years, three-dimensional (3D) cultures of tumor cells has emerged as an important tool in cancer research. The significance of 3D cultures, such as tumor spheroids, lies in their ability to mimic the in vivo tumor microenvironment more precisely, offering a nuanced understanding of immune responses within the context of tumor progression. In fact, the infiltration of cytotoxic lymphocytes is key to determining patients' prognosis in several types of cancer and response to immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!