Each cell lineage specified in the preimplantation mammalian embryo depends on intrinsic factors for its development, but there is also mutual interdependence between them. OCT4 is required for the ICM/epiblast lineage, and at transient high levels for extraembryonic endoderm, but also indirectly through its role in regulating Fgf4 expression, for the establishment and proliferation of extraembryonic ectoderm from polar trophectoderm. The transcription factor SOX2 has also been implicated in the regulation of Fgf4 expression. We have used gene targeting to inactivate Sox2, examining the phenotypic consequences in mutant embryos and in chimeras in which the epiblast is rescued with wild-type ES cells. We find a cell-autonomous requirement for the gene in both epiblast and extraembryonic ectoderm, the multipotent precursors of all embryonic and trophoblast cell types, respectively. However, an earlier role within the ICM may be masked by the persistence of maternal protein, whereas the lack of SOX2 only becomes critical in the chorion after 7.5 days postcoitum. Our data suggest that maternal components could be involved in establishing early cell fate decisions and that a combinatorial code, requiring SOX2 and OCT4, specifies the first three lineages present at implantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC195970 | PMC |
http://dx.doi.org/10.1101/gad.224503 | DOI Listing |
Animals (Basel)
November 2024
Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
The Chinese soft-shelled turtle () is an economically important species in aquaculture, and its growth pattern is characterized by significant sexual dimorphism. However, the underlying molecular mechanisms of this phenomenon have mostly been investigated in the gonadal tissues of , and there are no articles on sex differentiation from the brain of . Here, we analyzed transcriptomes of the brains of adult male and female using high-throughput Illumina sequencing technology, establishing a set of differential genes and differential transcription factors.
View Article and Find Full Text PDFPLoS Comput Biol
November 2024
Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany.
Understanding how multicellular organisms reliably orchestrate cell-fate decisions is a central challenge in developmental biology, particularly in early mammalian development, where tissue-level differentiation arises from seemingly cell-autonomous mechanisms. In this study, we present a multi-scale, spatial-stochastic simulation framework for mouse embryogenesis, focusing on inner cell mass (ICM) differentiation into epiblast (EPI) and primitive endoderm (PRE) at the blastocyst stage. Our framework models key regulatory and tissue-scale interactions in a biophysically realistic fashion, capturing the inherent stochasticity of intracellular gene expression and intercellular signaling, while efficiently simulating these processes by advancing event-driven simulation techniques.
View Article and Find Full Text PDFDev Cell
January 2025
Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France. Electronic address:
The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet.
View Article and Find Full Text PDFbioRxiv
June 2024
Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA.
Cyclin-dependent kinases (CDK) are key regulatory enzymes that regulate proliferation dynamics and cell fate in response to extracellular inputs. It remains largely unknown how CDK activity fluctuates and influences cell commitment during early mammalian development. Here, we generated a transgenic mouse model expressing a CDK kinase translocation reporter (KTR) that enabled quantification of CDK activity in live single cells.
View Article and Find Full Text PDFbioRxiv
August 2024
Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!