Background And Purpose: Angiogenesis occurs after cerebral ischemia, and the extent of angiogenesis has been correlated with survival in stroke patients. However, postischemic angiogenesis is short-lived and may be completely terminated within a few weeks after ischemic insult. The molecular mechanism underlying the dissolution of postischemic angiogenic processes is poorly understood. Although the expression of angiogenic genes has been studied in ischemic stroke models, the activation of angiostatic genes after cerebral ischemia has not been investigated. Thrombospondin (TSP)-1 and TSP-2 are naturally occurring angiostatic factors, which inhibit angiogenesis in vivo. The aim of the present study was to explore the expression of TSP-1 and TSP-2 in relation to the evolution of angiogenic process in a focal ischemia model in rats.
Methods: Rats underwent cortical ischemia in the middle cerebral artery territory for 60 minutes and reperfusion for up to 2 weeks. Northern and Western blot analysis were used to study the temporal profile of TSP-1 and TSP-2 expression at the mRNA and protein level, respectively. In situ hybridization and immunohistochemical studies were used to examine the spatial expression patterns. Double immunostaining was applied to define the cellular origins of TSP-1 and TSP-2.
Results: A biphasic expression of TSP-1 was noted after ischemia, peaking at 1 and 72 hours. Endothelial cells in the leptomeninges were the only source of the first TSP-1 peak, whereas endothelial, glial, neuronal, and macrophage cells contributed to the second peak of TSP-1 expression. TSP-2 expression occurred much later and in a monophasic manner, peaking 2 weeks after ischemia. TSP-2 immunoreactivity was observed in endothelial, neuronal, and macrophage, but not glial, cells. TSP-1 was expressed before the peak of angiogenesis, whereas robust TSP-2 expression occurred at the peak of angiogenesis and continued into the period when angiogenesis had completely resolved.
Conclusions: Robust expression of TSP-1 and TSP-2, 2 major angiostatic factors, was noted in the ischemic brain with different temporal expression profiles from different cellular origins. The expression of these angiostatic factors, especially TSP-2, likely contributes to the spontaneous resolution of postischemic angiogenesis. Further studies are needed to explore the molecular mechanisms that regulate the balance of angiogenic and angiostatic factors in the ischemic brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.str.0000047100.84604.ba | DOI Listing |
Exp Eye Res
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China. Electronic address:
Corneal neovascularization (CNV) is a dynamically regulated process that arises due to a disruption in the equilibrium between pro-angiogenic and anti-angiogenic factors. Various cytokines are released by vascular endothelial cells and macrophages in damaged cornea, ultimately inducing CNV. The cAMP-response element-binding protein (CREB), a nuclear transcription factor, potentially impacts tumor angiogenesis by modulating the secretion of angiogenic proteins.
View Article and Find Full Text PDFFront Cardiovasc Med
March 2024
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
Int J Biol Macromol
January 2024
Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China. Electronic address:
In this study, two polysaccharide fractions (TSP-1 and TSP-2) were isolated from Toona sinensis leaves. The physicochemical properties and solution conformations of TSP-1 and TSP-2 were investigated. DSC and TG results showed that TSP-1 and TSP-2 had thermal stability.
View Article and Find Full Text PDFSemin Cell Dev Biol
March 2024
Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy. Electronic address:
Thrombospondins (TSPs) have numerous different roles in cancer, regulating the behavior of cancer cells and non-neoplastic cells, and defining the responses of tumor cells to environmental changes, thorough their ability to orchestrate cellular and molecular interactions in the tumor microenvironment (TME). As a result of these activities, TSPs can also control drug delivery and activity, tumor response and resistance to therapies, with different outcomes depending on the nature of TSP-interacting cell types, receptors, and ligands, in a highly context-dependent manner. This review, focusing primarily on TSP-1, discusses the effects of TSPs on tumor response to chemotherapy, antiangiogenic, low-dose metronomic chemotherapy, immunotherapy, and radiotherapy, by analyzing TSP activity on different cell compartments - tumor cells, vascular endothelial cells and immune cells.
View Article and Find Full Text PDFLab Invest
June 2023
Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:
Age-related macular degeneration (AMD) is a leading cause of irreversible central vision loss in the elderly. The pathology of neovascular age-related macular degeneration (nAMD), also known as wet AMD, is associated with an abnormal blood vessel growth in the eye and involves an imbalance of proangiogenic and antiangiogenic factors. Thrombospondin (TSP)-1 and TSP-2 are endogenous matricellular proteins that inhibit angiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!