We examined the hypothesis that the renin-angiotensin system plays an important role in vascular remodeling (defined as reduced external diameter) during chronic hypertension. We measured pressure, diameter, and cross-sectional area of the vessel wall in maximally dilated cerebral arterioles in transgenic mice that overexpress both human renin and human angiotensinogen and in spontaneously hypertensive mice, a model of chronic hypertension that is thought to develop independently of the renin-angiotensin system. Systemic arterial pressure under conscious conditions was increased by similar amounts in transgenically hypertensive mice (153+/-6 versus 117+/-4 mm Hg in controls; mean+/-SE, P<0.05) and spontaneously hypertensive mice (148+/-5 versus 112+/-5 mm Hg; P<0.05). The external diameter of maximally dilated cerebral arterioles was reduced in transgenically hypertensive mice (52+/-2 versus 66+/-3 micro m; P<0.05), but not in spontaneously hypertensive mice (58+/-4 versus 60+/-4 micro m; P>0.05). The cross-sectional area of the vessel wall was increased in both transgenically hypertensive mice (504+/-53 versus 379+/-37 microm2; P<0.05) and spontaneously hypertensive mice (488+/-40 versus 328+/-38 microm2; P<0.05). During maximal dilatation, the stress-strain curves in cerebral arterioles of transgenically hypertensive mice and spontaneously hypertensive mice were shifted to the right of the curves in corresponding controls, an indication that arteriolar distensibility was increased in the transgenically and spontaneously hypertensive groups. Thus, cerebral arterioles undergo remodeling and hypertrophy in transgenically hypertensive mice, but only hypertrophy in spontaneously hypertensive mice. These findings support the hypothesis that the renin-angiotensin system is an important determinant of vascular remodeling during chronic hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.hyp.0000042427.05390.5cDOI Listing

Publication Analysis

Top Keywords

human renin
8
renin-angiotensin system
8
chronic hypertension
8
hypertensive mice
8
cerebral arteriolar
4
arteriolar structure
4
mice
4
structure mice
4
mice overexpressing
4
overexpressing human
4

Similar Publications

Characterizing SV40-hTERT Immortalized Human Lung Microvascular Endothelial Cells as Model System for Mechanical Stretch-Induced Lung Injury.

Int J Mol Sci

January 2025

Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.

Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.

View Article and Find Full Text PDF

Non-Hypertensive Effects of Aldosterone.

Int J Mol Sci

January 2025

Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland.

Aldosterone, the primary adrenal mineralocorticoid hormone, as an integral part of the renin-angiotensin-aldosterone system (RAAS), is crucial in blood pressure regulation and maintaining sodium and potassium levels. It interacts with the mineralocorticoid receptor (MR) expressed in the kidney and promotes sodium and water reabsorption, thereby increasing blood pressure. However, MRs are additionally expressed in other cells, such as cardiomyocytes, the endothelium, neurons, or brown adipose tissue cells.

View Article and Find Full Text PDF

Sex-Specific Differences in the Pathophysiology of Hypertension.

Biomolecules

January 2025

Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.

Hypertension is one of the most common comorbidities in cardiometabolic diseases, affecting nearly one third of adults. As a result, its pathophysiological mechanisms have been studied extensively and are focused around pressure natriuresis, the renin-angiotensin system (RAS), the sympathetic nervous system, oxidative stress, and endothelial dysfunction. Additionally, hypertension secondary to other underlying etiologies also exists.

View Article and Find Full Text PDF

Objective: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder with an increased risk for cardiovascular disease (CVD) that is enhanced by obesity. This study sought to determine whether a panel of cardiovascular risk proteins (CVRPs) would be dysregulated in overweight/obese PCOS patients, highlighting potential biomarkers for CVD in PCOS.

Methods: In this exploratory cross-sectional study, plasma levels of 54 CVRPs were analyzed in women with PCOS (n = 147) and controls (n = 97).

View Article and Find Full Text PDF

Severe sepsis is cognate with life threatening multi-organ dysfunction. There is a disturbance in endocrine functions with alterations in several hormonal pathways. It has frequently been linked with dysfunction in the hypothalamic pituitary-adrenal axis (HPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!