Geometry and vibrational spectroscopic data of benzil-d0 benzil-d10 and benzil-18O calculated at various levels of theory (RHF/6-31G*, B3LYP/6-31G*, BLYP/6-31G*) are reported. The theoretical results are discussed mainly in terms of the comparisons with infrared (4000-100 cm(-1)) and Raman (4000-50 cm(-1)) spectral data. The calculated isotopic frequency shifts, induced by the 18O- and d10-labeling, are in a good agreement with the measured values. A complete vibrational assignment was made with the help of ab initio force field calculations. The data thus obtained were used for reassigning some vibrational frequencies. The results of the optimized molecular structure obtained on the basis of RHF and the DFT calculations are presented and compared with the experimental X-ray diffraction for the benzil-d0 single crystal. It turns out that the best structural parameters are predicted by the B3LYP/6-31G* method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1386-1425(02)00043-4 | DOI Listing |
Alzheimers Dement
December 2024
Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany.
Background: Promising elements of assistive technologies are available to help people with cognitive impairment in their daily lives. However, there has been limited research on how smartwatches can directly interact with persons who have cognitive impairments. We looked at the factors that affect the effectiveness of interventions provided via a smartwatch.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Metal fatigue, characterized by the accumulation of dislocation defects, is a prevalent failure mode in structural materials. Nondestructive early-stage detection of metal fatigue is extremely important to prevent disastrous events and protect human life. However, the lack of a precise quantitative method to visualize fatigue with spatiotemporal resolution poses a significant obstacle to timely detection.
View Article and Find Full Text PDFInt J Clin Pediatr Dent
November 2024
Department of Pediatric and Preventive Dentistry, Dr Ziauddin Ahmad Dental College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
Aim And Background: Although local anesthesia (LA) eliminates pain and instills a positive dental attitude, the physical appearance of its syringe is highly fear provoking and often intolerable. Therefore, the purpose of this study was to evaluate the pain and fear perception in camouflaged syringe (CS) and vibration-assisted syringe (VA) when compared with conventional syringe and with each other (VACS) during local anesthetic administration in pediatric patients aged between 6 and 12 years.
Materials And Methods: Eighty-five subjects were randomly assigned into three groups: CS group ( = 7), VA group ( = 26), and VACS group ( = 27).
J Phys Chem A
January 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
The strategy of designing efficient room-temperature phosphorescence (RTP) emitters based on hydrogen bond interactions has attracted great attention in recent years. However, the regulation mechanism of the hydrogen bond on the RTP property remains unclear, and corresponding theoretical investigations are highly desired. Herein, the structure-property relationship and the internal mechanism of the hydrogen bond effect in regulating the RTP property are studied through the combination of quantum mechanics and molecular mechanics methods (QM/MM) coupled with the thermal vibration correlation function method.
View Article and Find Full Text PDFSci Rep
January 2025
College of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
Bladeless wind turbines face operational limitations due to the lock-in phenomenon. This study introduces two novel mechanisms for designing bladeless wind turbines to address this issue, enabling operation across a broad wind speed range from 2 to 10 m/s while ensuring that lock-in conditions are satisfied at any wind speed within this range. The study aims to maintain optimal performance without any decline that is observed in conventional bladeless wind turbines by controlling the turbine's natural frequency through implementing these mechanisms, either by adjusting the effective length of the stand or by incorporating an additional mass in the hollow mast, or both.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!