Colon drug delivery is advantageous in the treatment of colonic disease and oral delivery of drugs unstable or suceptible to enzymatic degradation in upper GI tract. In this study, multilayer coated system that is resistant to gastric and small intestinal conditions but can be easily degraded by colonic bacterial enzymes was designed to achieve effective colon delivery of prednisolone. Variously coated tablets containing prednisolone were fabricated using chitosan and cellulose acetate phthalate (CAP) as coating materials. Release aspects of prednisolone in simulated gastrointestinal fluid and rat colonic extracts (CERM) were investigated. Also, colonic bacterial degradation study of chitosan was performed in CERM. From these results, a three layer (CAP/Chitosan/CAP) coated system exhibited gastric and small intestinal resistance to the release of prednisolone in vitro most effectively. The rapid increase of prednisolone in CERM was revealed as due to the degradation of the chitosan membrane by bacterial enzymes. The designed system could be used potentially used as a carrier for colon delivery of prednisolone by regulating drug release in stomach and the small intestine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02977020 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
Different types of cancers affect the gastrointestinal tract (GIT), starting from the oral cavity and extending to the colon. In general, most of the current research focuses on the systemic delivery of the therapeutic agents, which leads to undesired side effects and a limited enhancement in the therapeutic outcomes. As a result, localized delivery within gastrointestinal (GI) cancers is favorable in overcoming these limitations.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. Electronic address:
Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
Plant-derived nanovesicles have gained attention given their similarity to mammalian exosomes and advantages such as low cost, sustainability, and tissue targeting. Thus, they hold promise for disease treatment and drug delivery. In this study, we proposed a time-efficient method, PEG 8000 combined with sucrose density gradient centrifugation to prepare ginger-derived nanovesicles (GDNVs).
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Biochemistry, Panjab University, Chandigarh 160014, India.
Over the years, numerous ligand-based organotin(IV) Schiff base compounds have shown remarkable cytotoxicity and anticancer activities, but their clinical use is restricted by systemic toxicity, prompting the search for targeted therapies. Targeted delivery can be enhanced by exploiting the inherent characteristics of cancer cells such as glutamine addiction, which is essential to support cellular biosynthesis and cell growth to sustain aberrant proliferation. Our previous study revealed glutamine-conjugated organotin(IV) compounds have strong DNA/protein affinities, favorable in silico ADME profiles, and significant antiproliferative activity.
View Article and Find Full Text PDFFront Immunol
January 2025
Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!