A novel method based on conversion of chlorinated volatile organic compounds (CVOCs) to chlorine using a new type of column packed with nanometer TiO2 coupled with chemiluminescence (CL) has been developed for determination of them in workplace air. CVOCs are converted to chlorine by nanometer TiO2 at 220 degrees C. The Cl2 that is produced is selectively enriched on the column and subsequently released from the column at 600 degrees C. The Cl2 that is released is determined using a postcolumn CL detector. The CL intensity was linear with CCl4 in the range of 0.1-380 ppm, and the detection limit was 40 ppb (S/N = 3). Higher sensitivity could be acquired by using a larger volume of enrichment A similar procedure could be used for the determination of other CVOCs. CL intensities of CH2Cl2, CHCl3, and CCl4 at the same concentration increased in the order CH2Cl2 < CHCl3 < CCl4. The method has been successfully applied to the determination of CCl4 in workplace air, where 0.15-150 ppm CCl4 would be detected. The possible mechanism for the long lifetime of the column packed with nanometer TiO2 was tested using Raman spectrometer, X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The results showed that the column packed with nanometer TiO2 could be operated in the reversible mode for determination of CVOCs under the present conditions. The method would be potentially applied to the analysis of other chlorinated compounds in environment, such as persistent organic pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac025882u | DOI Listing |
Nanoscale
December 2024
Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
The ability to characterize periodic nanostructures in the laboratory gains more attention as nanotechnology is widely utilized in a variety of application fields. Scanning-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is a promising candidate to allow non-destructive, element-sensitive characterization of sample structures down to the nanometer range for process engineering. Adopting a complementary metal-oxide semiconductor (CMOS) detector to work energy-dispersively single-photon detection, the whole range of emission angles of interest can be recorded at once.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China. Electronic address:
Immobilization of nanometer-scale photocatalysts on a 3D polymeric substrate could play several complementary roles in photocatalysis, such as providing mechanical stability, facilitating easy recycling after usage, enhancing adsorption capability, and improving light harvesting properties through multiple reflections. To achieve stable and efficient photocatalysis under weak light conditions, 3D cellulose micro-rolls were introduced into the photocatalytic composites. Here, the formation of micro-rolls is attributed to the presence of titania nanoparticles, which generate uneven shrinkage stress in cellulose during the freeze-drying process, thereby inducing the cellulose to curl up.
View Article and Find Full Text PDFACS Nano
December 2024
Antwerp engineering, photoelectrochemistry and sensing (A-PECS), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
Plasmonic core-shell nanostructures can make photocatalysis more efficient for several reasons. The shell imparts stability to the nanoparticles, light absorption is expanded, and electron-hole pairs can be separated more effectively, thus reducing recombination losses. The synthesis of metal@TiO core-shell nanoparticles with nanometer control over the shell thickness and understanding its effect on the resulting photocatalytic efficiency still remains challenging.
View Article and Find Full Text PDFChem Commun (Camb)
November 2024
Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
We explore the low-temperature limit of atomic layer deposition of Pt using MeCpPtMe and O. We reveal that by supplying a sufficiently high O exposure, highly dispersed and thermally stable Pt sub-nanometer clusters can be deposited onto the surface of P25 TiO nanoparticles even at room temperature by atmospheric-pressure ALD.
View Article and Find Full Text PDFEnviron Res
January 2025
Federal University of São Paulo, Science and Technology Institute, Talim Street, 330, São José dos Campos, SP, 12231-280, Brazil. Electronic address:
The rapid expansion of the biodiesel industry has substantially increased crude glycerol residue (CG) production, creating sustainability and economic challenges due to surplus glycerol generation. Conventional purification methods are costly and environmentally demanding, necessitating innovative strategies to utilize this residue effectively. This study innovates by exploring the microwave-assisted synthesis of carbon dots (CDs) from CG, exemplifying a shift toward sustainable biodiesel production by transforming the residue into a multifunctional material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!