A limitation of site-directed mutagenesis of homodimeric proteins is that both subunits will carry the same mutation. We have devised a way to prepare mixed dimers, in which only one chain bears a desired mutation, or each chain can bear a different mutation. Using the inducible nitric oxide oxygenase domain as a model, our strategy focused on the co-expression of two differentially tagged versions of the oxygenase domain, with isolation of the desired mixed dimer in two chromatography steps. We evaluated expression vectors encoding polyhistidine (His(6)), cellulose binding domain, glutathione-S-transferase, and polyglutamate (Glu(7))-tagged versions of the oxygenase domain for satisfactory levels of soluble protein expression and for their ability to form mixed dimers. The combination of His(6)- and Glu(7)-tagged subunits was successful in both respects, and the mixed dimers could be separated from either form of homodimer by sequential immobilized metal affinity chromatography and anion exchange chromatography. The UV-Vis spectrum, substrate binding properties, and enzymatic activity were not altered in the mixed dimer wild-type (His(6)/Glu(7)) compared to the two homodimers (His(6)/His(6) and Glu(7)/Glu(7)). We then characterized a mixed dimer variant in which one chain contained an E371A substitution (which prevents binding of the substrate L-arginine) while the other subunit was left unaltered. This species binds L-arginine and has about one-half the activity of the wild-type homodimer. Mutants known to destabilize the iNOS dimer (E411A, D454A, and W188F) were also investigated; in these cases co-expression with the wild-type subunit did not lead to the formation of stable mixed dimers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1046-5928(02)00588-0 | DOI Listing |
Gut
January 2025
State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
Background: The resistance of pancreatic ductal adenocarcinoma (PDAC) to trametinib therapy limits its clinical use. However, the molecular mechanisms underlying trametinib resistance in PDAC remain unclear.
Objective: We aimed to illustrate the mechanisms of resistance to trametinib in PDAC and identify trametinib resistance-associated druggable targets, thus improving the treatment efficacy of trametinib-resistant PDAC.
In this study, we investigated in detail the regulation mechanism of electron transfer under laser-induced breakdown (LIB) on weak O-D stimulated Raman scattering (SRS) in DMSO-DO solutions. Significantly, the Raman activity of O-D vibrations was greatly enhanced by two orders of magnitude due to electron transfer in DMSO molecules. Density functional theory (DFT) calculations showed that the O-D Raman activity was significantly enhanced in the DMSO-DO dimer compared to the DO dimer.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria.
Peptide bond formation from the pure protonated glycine dimer, H(Gly), and from the mixed protonated glycine-diglycine dimer, HGly(Gly), was recently found experimentally to occur in gas-phase experiments in the absence of any catalyst and especially under anhydrous conditions [, 2023, , 775]. In this contribution we further examine the conditions of such unimolecular reactions by means of density-functional theory calculations at the DFT/M06 2X/6-311G++(2df,p) level, focusing in particular on the role played by the protonation site. Two pathways, stepwise and concerted, are identified for the pure protonated dimer, and six pathways are examined for the mixed dimer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!