A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nucleotide excision repair- and polymerase eta-mediated error-prone removal of mitomycin C interstrand cross-links. | LitMetric

Interstrand cross-links (ICLs) make up a unique class of DNA lesions in which both strands of the double helix are covalently joined, precluding strand opening during replication and transcription. The repair of DNA ICLs has become a focus of study since ICLs are recognized as the main cytotoxic lesion inflicted by an array of alkylating compounds used in cancer treatment. As is the case for double-strand breaks, a damage-free homologous copy is essential for the removal of ICLs in an error-free manner. However, recombination-independent mechanisms may exist to remove ICLs in an error-prone fashion. We have developed an in vivo reactivation assay that can be used to examine the removal of site-specific mitomycin C-mediated ICLs in mammalian cells. We found that the removal of the ICL from the reporter substrate could take place in the absence of undamaged homologous sequences in repair-proficient cells, suggesting a cross-link repair mechanism that is independent of homologous recombination. Systematic analysis of nucleotide excision repair mutants demonstrated the involvement of transcription-coupled nucleotide excision repair and a partial requirement for the lesion bypass DNA polymerase eta encoded by the human POLH gene. From these observations, we propose the existence of a recombination-independent and mutagenic repair pathway for the removal of ICLs in mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151552PMC
http://dx.doi.org/10.1128/MCB.23.2.754-761.2003DOI Listing

Publication Analysis

Top Keywords

nucleotide excision
12
interstrand cross-links
8
removal icls
8
icls mammalian
8
mammalian cells
8
excision repair
8
icls
7
removal
5
repair
5
excision repair-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!