A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. | LitMetric

Environmental pH changes have broad consequences for growth and differentiation. The best-understood eukaryotic pH response pathway acts through the zinc-finger transcription factor PacC of Aspergillus nidulans, which activates alkaline pH-induced genes directly. We show here that Saccharomyces cerevisiae Rim101p, the pH response regulator homologous to PacC, functions as a repressor in vivo. Chromatin immunoprecipitation assays show that Rim101p is associated in vivo with the promoters of seven Rim101p-repressed genes. A reporter gene containing deduced Rim101p binding sites is negatively regulated by Rim101p and is associated with Rim101p in vivo. Deletion mutations of the Rim101p repression targets NRG1 and SMP1 suppress rim101Delta mutant defects in ion tolerance, haploid invasive growth, and sporulation. Therefore, transcriptional repression is the main biological function of Rim101p. The Rim101p repression target Nrg1p is in turn required for repression of two alkaline pH-inducible genes, including the Na+ pump gene ENA1, which is required for ion tolerance. Thus, Nrg1p, a known transcriptional repressor, functions as an inhibitor of alkaline pH responses. Our findings stand in contrast to the well-characterized function of PacC as a direct activator of alkaline pH-induced genes yet explain many aspects of Rim101p and PacC function in other organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151549PMC
http://dx.doi.org/10.1128/MCB.23.2.677-686.2003DOI Listing

Publication Analysis

Top Keywords

ion tolerance
12
rim101p
10
transcription factor
8
nrg1 smp1
8
saccharomyces cerevisiae
8
alkaline ph-induced
8
ph-induced genes
8
rim101p associated
8
rim101p repression
8
repression
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!