Regulation of depotentiation and long-term potentiation in the dentate gyrus of freely moving rats by dopamine D2-like receptors.

Cereb Cortex

Institute for Physiology of the Charité, Synaptic Plasticity Group, Humboldt University, Tucholskystrasse 2, 10117 Berlin, Germany.

Published: February 2003

Dopamine receptors are significantly involved in hippocampus-based cognitive processes. Whereas the involvement of D1-like receptors in hippocampal plasticity has been described, the role of D2-like receptors remains to be clarified. Therefore, we investigated the contribution of D2-like receptors to synaptic transmission, long-term potentiation (LTP) and depotentiation in the dentate gyrus of freely moving rats. Male Wistar rats underwent chronic implantation of a recording electrode in the granule cell layer, a stimulating electrode in the medial perforant path and a cannula in the ipsilateral cerebral ventricle (to enable drug administration). The D2-like receptor agonists quinpirole and noraporphine dose-dependently inhibited basal synaptic transmission. Agonist priming of D2-like receptors with a drug concentration which had no effect on synaptic transmission inhibited depotentiation but did not affect LTP. The agonist effects on depotentiation were prevented by the D2-like antagonist remoxipride. Remoxipride itself did not influence basal synaptic transmission or depotentiation. Interestingly, 'weak' LTP (<4 h) but not 'strong' LTP (>24 h) was inhibited by prior application of remoxipride. These results suggest a specific role for dopamine D2-like receptors in the regulation of both depotentiation and LTP in vivo and offer an important and novel insight as to the involvement of these receptors in processes related to learning and memory.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/13.2.123DOI Listing

Publication Analysis

Top Keywords

d2-like receptors
20
synaptic transmission
16
regulation depotentiation
8
long-term potentiation
8
dentate gyrus
8
gyrus freely
8
freely moving
8
moving rats
8
dopamine d2-like
8
receptors
8

Similar Publications

Reduced sensitivity to cocaine effects and changes in mesocorticolimbic dopamine receptors in adolescent sexually active female rats.

Psychopharmacology (Berl)

December 2024

Evolutionary Genetics Department, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.

Rationale: The sexual behavior of the female rat is highly motivated, and the mesocorticolimbic dopaminergic system -involved in psychostimulants effects- has been implicated in its regulation. Female rats begin to express sexual behavior during adolescence, a period during which this system is not yet mature.

Objective: To examine the impact of cocaine on sexual motivation and behavior of adolescent and adult female rats, and to determine the dopamine receptors binding in mesocorticolimbic areas of these females.

View Article and Find Full Text PDF

Exposure to stressful conditions such as forced swim stress (FSS) induces antinociception. Previous reports determined that dopamine receptors in the CA1 hippocampal area are important in chronic pain processing. Considering that neural mechanisms behind acute and chronic pain differ significantly, in this study, we have investigated the role of dopamine receptors within the CA1 region in the FSS-induced antinociceptive response in the acute pain induced by the tail-flick test in the rat.

View Article and Find Full Text PDF

Midbrain dopamine neurons are well-known to shape central nervous system function, yet there is growing evidence for their influence on the peripheral immune systems. Here we demonstrate that midbrain dopamine neurons form a circuit to the spleen via a multisynaptic pathway from the dorsal vagal complex (DVC) through the celiac ganglion. Midbrain dopamine neurons modulate the activity of D1-like and D2-like dopamine receptor-expressing DVC neurons.

View Article and Find Full Text PDF

The thalamic reticular nucleus (TRN) is a thin shell of gap junction coupled GABAergic inhibitory neurons that regulate afferent sensory relay of the thalamus. The TRN receives dopaminergic innervation from the midbrain, and it is known to express high concentrations of D1 and D4 receptors. Although dopaminergic modulation of presynaptic inputs to TRN has been described, the direct effect of dopamine on TRN neurons and its electrical synapses is largely unknown.

View Article and Find Full Text PDF

Postingestive nutrient stimulation conditions food preferences through striatal dopamine and may be associated with blunted brain responses in obesity. In a cross-sectional study, we tested flavor-nutrient conditioning (FNC) with maltodextrin-enriched yogurt, with maltodextrin previously optimized for concentration and dextrose equivalents (n = 57), and to mask texture cues (n = 102). After conditioning, healthy volunteers (n = 52) increased preference for maltodextrin-paired (+102 kcal, CS+), relative to control (+1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!