A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Matrix metalloproteinase(s) mediate(s) NO-induced dissociation of beta-catenin from membrane bound E-cadherin and formation of nuclear beta-catenin/LEF-1 complex. | LitMetric

Modulation of the adenomatous polyposis coli (APC)-beta-catenin pathway by inflammatory mediators and extracellular matrix may be important in colon carcinogenesis. We have recently shown that nitric oxide (NO) induces the accumulation of cytosolic beta-catenin and subsequent formation of the nuclear beta-catenin/lymphocyte enhancing factor (LEF)-1 complex in conditionally immortalized young mouse colonic epithelial (YAMC) cells. In the present study, we explored the mechanism(s) through which NO exerts its effect on cytosolic beta-catenin accumulation and nuclear beta-catenin/LEF-1 complex formation. We found that NO-induced degradation of the membrane bound E-cadherin at tight junctions. Using an anti-E-cadherin antibody specific for its extracellular domain, we detected a 50kDa degradation fragment of E-cadherin (120 kDa) from the culture medium conditioned by YAMC cells exposed to the NO-releasing drug, NOR-1, for 4 and 24 h. As beta-catenin is normally bound to transmembrane E-cadherin and thus anchored to the cytoskeleton structure, the degradation of E-cadherin induced by NO may cause dissociation of beta-catenin from membrane bound E-cadherin. This was demonstrated by the detection of beta-catenin accumulation in the soluble cytosolic fractions in YAMC after exposure to NO-releasing drugs. Furthermore, the degradation of E-cadherin and the release of beta-catenin to cytosol were accompanied by the formation of nuclear beta-catenin/LEF-1 complex, demonstrating the dissociation of beta-catenin from E-cadherin may be responsible for the activation of beta-catenin/LEF-1 transcription complex. Co-treatment with NO donors and broad-spectrum matrix metalloproteinase (MMP) inhibitors TIMP-1 (100 ng/ml), GM6001 (10 micro M) and GM1489 (10 micro M) abolished the degradation of E-cadherin induced by NO as demonstrated by western blot analysis. These MMP inhibitors also blocked the cytosolic accumulation of beta-catenin and nuclear formation of beta-catenin/LEF-1 complex. The sum effect of MMP inhibitors demonstrated that NO-induced activation of MMP may cause the degradation of E-cadherin and the subsequent dissociation of beta-catenin, thereby contributing to the cytosolic accumulation of beta-catenin and nuclear formation of beta-catenin/LEF-1 complex.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/23.12.2119DOI Listing

Publication Analysis

Top Keywords

beta-catenin/lef-1 complex
20
dissociation beta-catenin
16
degradation e-cadherin
16
membrane bound
12
bound e-cadherin
12
formation nuclear
12
nuclear beta-catenin/lef-1
12
mmp inhibitors
12
beta-catenin
11
e-cadherin
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!