Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The African clawed frog Xenopus laevis has long been used to study the development and function of the vertebrate retina. An efficient technique for generating transgenic Xenopus embryos, the REMI procedure, has enabled the stable overexpression of transgenes in developing and mature X. laevis. In the retina, transgenes driven by retinal-specific promoters have been used to study protein trafficking, circadian rhythms, and retinal degeneration. The REMI technique is surprisingly simple, consisting of integration of plasmid DNA into permeabilized sperm nuclei, followed by transplantation of these nuclei into unfertilized eggs. Here, we describe the reagents and steps necessary for generation of transgenic embryos using the REMI reaction and discuss its applications for the study of retinal development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1046-2023(02)00259-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!