Object: The purpose of this study was to investigate the use of a polymer gel-based dosimeter for the evaluation of geometric and dosimetric inaccuracies during gamma knife radiosurgery and during the irradiation of an experimental animal.
Methods: A polymer gel dosimeter, based on acrylic monomers, was used for experiments conducted in this study. The accuracy of the dosimeter was evaluated on a Siemens EXPERT 1-tesla scanner in the transmitter/receiver head coil with the use of a multiecho sequence with 16 echoes, TE 22.5 to 360 msec, TR 2000 msec, slice thickness 2 mm, field of view 255 mm, and a pixel size of 0.5 x 0.5 mm2. Two experiments were conducted. First, the head phantom containing the polymer gel dosimeter was irradiated using 4-, 8-, 14-, and 18-mm isocenters. Second, a specially designed rat phantom was irradiated by four 4-mm isocenters. The dose profiles in the x, y, and z axes were calculated in the treatment planning system and measured with the polymer gel dosimeter and the results were compared. There was good agreement between the measured and calculated dose profiles. The maximum deviation in the spatial position of the center of measured and calculated dose profiles was 0.5 mm in the head phantom and 1 mm in the rat phantom. The maximum deviation in the width of the selected reference isodose of measured profiles was 1.2 mm in the head phantom and 1.1 mm in the rat phantom.
Conclusions: The use of the polymer gel-based dosimeter for the verification of stereotactic procedures has advantages compared with other dosimetric systems. The dosimeter itself is tissue equivalent. Three-dimensional dose distributions can be measured and the dosimeter allows simulation of the therapeutic procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/jns.2002.97.supplement | DOI Listing |
Angew Chem Int Ed Engl
January 2025
UESTC: University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Jianshe Road, Chengdu, CHINA.
Catenated networks exclusively composed of intertwining rings were first envisioned as "Olympic gels" by Pierre-Gilles de Gennes four decades ago but have not been successfully prepared in artificial materials yet due to the challenge in synthesis. Herein, we present a bio-inspired, evaporation-assisted strategy to address this issue. In our design, the evaporation of liquid catalysts that induce ring-chain equilibrium of polymer systems drives macrocycles to encounter and assists their catenation through reversible cyclization.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.
Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.
BMC Oral Health
January 2025
Department of Endodontics, Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Egypt.
Background: Disinfection of the root canal system is a challenge to all clinicians, calcium hydroxide Ca(OH) one of the most popular intracanal medications used for this purpose, has some unwanted effects on dentine. This study aimed to investigate the antibiofilm effect of Nanochitosan (CSNPs) and Calcium hydroxide Ca(OH) intra canal medications and their effect on the microhardness and chemical structure of radicular dentine.
Methodology: A total of 52 extracted human mandibular premolars were used.
Nat Commun
January 2025
Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Nature uses fibrous structures for sensing and structural functions as observed in hairs, whiskers, stereocilia, spider silks, and hagfish slime thread skeins. Here, we demonstrate multi-nozzle printing of 3D hair arrays having freeform trajectories at a very high rate, with fiber diameters as fine as 1.5 µm, continuous lengths reaching tens of centimeters, and a wide range of materials with elastic moduli from 5 MPa to 3500 MPa.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!