Depletion of the electron donor ascorbate causes rapid inactivation of chloroplastic ascorbate peroxidase (APX) of higher plants, while cytosolic APX is stable under such conditions. Here we report the cloning of cDNA from Galdieria partita, a unicellular red alga, encoding a novel type of APX (APX-B). The electrophoretic mobility, Km values, kcat and absorption spectra of recombinant APX-B produced in Escherichia coli were measured. Recombinant APX-B remained active for at least 180 min after depletion of ascorbate. The amino-terminal half of APX-B, which forms the distal pocket of the active site, was richer in amino acid residues conserved in chloroplastic APXs of higher plants rather than cytosolic APXs. In contrast, the sequence of the carboxyl-terminal half, which forms the proximal pocket, was similar to that of the cytosolic isoform. The stability of APX-B might be due to its cytosolic isoform-like structure of the carboxyl-terminal half.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.66.2367DOI Listing

Publication Analysis

Top Keywords

higher plants
12
ascorbate peroxidase
8
red alga
8
galdieria partita
8
plants cytosolic
8
recombinant apx-b
8
carboxyl-terminal half
8
cytosolic
5
apx-b
5
stable form
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!