[Hydrous and photosynthetic adaptations of common and durum wheat to saline stress].

C R Biol

Laboratoire de biologie moléculaire, Programme des céréales, Inra, Rabat, Maroc.

Published: November 2002

Seven varieties of bred wheat and seven varieties of durum wheat were cultivated in three different sites from the area of Errachidia (southeastern Morocco). These sites differ by the degree of salinity in the irrigation water. Results obtained showed that the reduction in leaf area is the principal strategy that makes it possible to attenuate the effects of the reduction in the availability of water under saline stress. Bread wheat, which limited the reduction in the leaf area, with the risk to undergo some hydrous problems, seems to better preserve its photosynthetic potentialities and grain productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1631-0691(02)01531-7DOI Listing

Publication Analysis

Top Keywords

durum wheat
8
reduction leaf
8
leaf area
8
[hydrous photosynthetic
4
photosynthetic adaptations
4
adaptations common
4
common durum
4
wheat
4
wheat saline
4
saline stress]
4

Similar Publications

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

Wheat2035: Integrating Pan-omics and Advanced Biotechnology for Future Wheat Design.

Mol Plant

January 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China. Electronic address:

Wheat (Triticum aestivum L.) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation.

View Article and Find Full Text PDF

Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.

Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.

View Article and Find Full Text PDF

Contribution of crossing over to genetic variance in maize and wheat populations.

Plant Genome

March 2025

Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA.

Crossing over breaks linkages and leads to a wider array of allele combinations. My objective was to assess the contribution of crossing over to genetic variance (V) in maize (Zea mays L.) and wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide polymorphic markers (SNPs) resulted in a substantial improvement in predictive ability compared to the conventional genomic prediction models. Over the course of several years, the prediction ability varied due to diverse weather conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!