Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

J Exp Zool A Comp Exp Biol

Department of Biological Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada 89154, USA.

Published: January 2003

Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed acclimation to hypoxic conditions, apart from an increased heart rate, there were no other cardiovascular changes associated with the low salinity episode. The implications of these changes in cardiovascular dynamics are discussed in relation to physiological mechanisms and the ecology of decapod crustaceans, in hypoxic or low salinity environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.a.10176DOI Listing

Publication Analysis

Top Keywords

low salinity
44
heart rate
20
salinity hypoxia
16
stroke volume
16
salinity
13
decapod crustaceans
12
haemolymph flow
12
hypoxic conditions
12
low
11
cardiovascular dynamics
8

Similar Publications

The green seaweed relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. -associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear.

View Article and Find Full Text PDF

The bioaugmentation performance is severely reduced in the treatment of high-saline pesticide wastewater because the growth and degradation activity of pesticide degraders are significantly inhibited by high salt concentrations. In this study, a heterologous biodegradation pathway comprising the seven genes mpd/pnpABCDEF responsible for the bioconversion of p-nitrophenol (PNP)-substituted organophosphorus pesticides (OPs) into β-oxoadipate and the genes encoding Vitreoscilla hemoglobin (VHb) and green fluorescent protein (GFP) were integrated into the genome of a salt-tolerant chassis Halomonas cupida J9, to generate a genetically engineered halotolerant degrader J9U-MP. RT-PCR assays demonstrated that the nine exogenous genes are successfully transcribed to mRNA in J9U-MP.

View Article and Find Full Text PDF

The impact of deicer and anti-icer use on plant communities in stormwater detention basins: Characterizing salt stress and phytoremediation potential.

Sci Total Environ

January 2025

Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA.

We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none).

View Article and Find Full Text PDF

Elemental cryo-imaging reveals SOS1-dependent vacuolar sodium accumulation.

Nature

January 2025

Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution.

View Article and Find Full Text PDF

Coastal deoxygenation impacts phytoplankton communities crucial for marine productivity. The inter- and intra-annual variability in phytoplankton communities at a shallow (27 m) station over the Western Indian Shelf (CaTS site, off Goa) during deoxygenation events of the late southwest monsoon (LSWM September-October) were studied from 2020 to 2023. The water column (0-27 m depth) experienced seasonal hypoxia/anoxia at subsurface depths (0-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!